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Abstract 

    The aim purpose of this research is to study the behavior of the trapped electron in the oxygen 

vacancy, called color centers (F+) present in the ionic material of titanium dioxide (TiO2). The 

theory of perturbation, the notion of effective mass and linear combination of atomic 

orbitals (LCAO) were used to determine the energy and wave function of F+ without and with 

a constant electric field. The study is expanded for the electron presents in one of four titanium 

cations, using LCAO and the effective mass. The findings clearly show that the F+ center 

behaves like a metallic bond in an ionic crystal. 

Key words 

Color centers defects, titanium dioxide (TiO2), LCAO, perturbation theory, oxygen vacancy. 
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 ملخص

 )F+( الألوان مراكز المسمى الأكسجين شاغر في المحاصر الإلكترون سلوك دراسة هو البحث هذا من الغرض    

 والمزيج الفعالة الكتلة فكرة الاضطراب و نظرية استخدام تم. )2TiO( التيتانيوم أكسيد لثاني الأيونية المادة في الموجودة

. ثابت كهربائي مجالفي وجود و غياب  F+ لـالطاقة و الدالة الموجية  لتحديد )LCAO (الذرية المدارات من الخطي

، الفعالة والكتلة LCAO، باستخدام تيتانيوم الكتيونات الاربعة من من واحدة في الموجود الإلكترون إلى الدراسة امتدت

 .أيونية بلورة في معدنية رابطة مثل يتصرف F+ مركز أن بوضوح النتائج تظهر

، الذرية المدارات من الخطي المزيجنظرية  ،)2TiO(ثاني اوكسيد التيتانيوم ،الألوان مراكز عيوب: مفتاحيةكلمات 

 .الأكسجين شاغر الاضطراب، نظرية
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Résumé 

    Le but de cette recherche est d'étudier le comportement de l'électron piégé dans la lacune 

d'oxygène appelé le centre coloré (F+), présent dans le matériau ionique du dioxyde de 

titane (TiO2). La théorie de la perturbation, la notion de masse effective et la combinaison 

linéaire d'orbitales atomiques (CLOA) ont été utilisées pour déterminer l'énergie et la 

fonction d'onde de F+ sans et avec un champ électrique constant. L'étude est étendue pour 

l’électron présent dans l'un des quatre cations de titane, en utilisant CLOA et la masse 

effective. Les résultats montrent clairement que le centre F+ se comporte comme une liaison 

métallique dans un cristal ionique. 

Mots clés :  

Défauts des centres colorés, dioxyde de titane (TiO2), CLOA, La théorie de la perturbation, 

lacune d'oxygène. 

 

 

 

 

 

 

 

 



 

v 

ACKNOWLEDGEMENT 

    First and foremost, praises and thanks to the ALLAH, the Almighty, for His showers 

of blessings throughout my research work which has been successfully completed.  

    I would like to express my deep and sincere gratitude to my supervisor Dr. A. 

Bouhekka for giving me the opportunity to do research and providing invaluable 

guidance throughout this work. His dynamism, vision, sincerity and motivation have 

deeply inspired me. He has taught me the methodology to carry out a scientific work 

and to present it as clearly as possible, indicating strongly its values and importance, 

to be an independent successful researcher in the future. It was a great privilege and 

honor to work and study under his guidance. 

    My thanks go to all the jury members for accepting evaluating our project and 

especially, in advance, for their valuable scientific critics and notes that surely will 

improve the present manuscript.  

    I am extending my thanks to all the teachers who taught and educated me in my 

whole school career. 

    I would like thank from my bottom of my heart my parents for their love, prayers 

and for their emotional and financial support. 

    Huge thank to my brothers and sisters, Abdel kader, Tawfik, Hossam, Iman, Hager 

and my little cute sister Chahrazad. 

Special thanks to all my friends especially Abderrahman, Mustapha and Lakhdar.  

    Finally, my thanks go to all the people who have supported me, directly or indirectly, 

to complete this innovative simple master project. I hope this will be my departure 

point towards enjoying doing research, considered as the key factor to develop any 

society.  

 

                                  H. Nehmar     

 



 

vi 

List of figure 

Figure. 1.1 Schottky defect ……………………………………….………………………….16 

Figure. 1.2 Frankel defect………………………………………….………………………….17 

Figure. 1.3 Anti-site defect………………………………………….………………………...18 

Figure. 1.4 Electron micrograph showing a dislocation in silver, imaged as a dark line……….19 

Figure. 1.5 An edge dislocation in cadmium telluride, CdTe…………………………….…....20 

Figure. 1.6 An edge dislocation in a monatomic crystal………………………………….........21 

Figure. 1.7 Edge dislocation…………………………………………………………………..21 

Figure. 1.8 The atom planes spiral around the dislocation line……………………………...…22 

Figure. 1.9 Screw dislocation…………………………………………………………………23 

Figure. 1.10 Mixed dislocation…………………………………………………………….….24 

Figure. 1.11 Planar defects in solids: boundaries between slightly misaligned regions or    

domains……………………………………………………………………………………….25 

Figure. 1.12 Low-angle grain boundary…………………………………………………….…25 

Figure. 1.13 Twin plane in rutile, TiO2….………………………………………………….…26 

Figure. 1.14 Polysynthetic twinning……………………………………………………….….27 

Figure. 1.15 Antiphase boundaries…………………………………………………………....28 

Figure. 1.16 Energy levels of an exciton……………………………….……………….……..29 

Figure. 1.17 (a) Frankel exciton, (b) Mott and Wannier exciton…………….……….………..30 

Figure. 1.18 The types of the F center……………………………………….…….…………..31 

Figure. 2.1 Quantum dot of an F+ center……………………………….……….……………..39 

Figure. 2.2 The energy levels of a quantum dot………………………………..………………40 

Figure. 2.3 Perturbation of the F+ by a constant electric field………….……..………………..42 

Figure. 2.4 Energy versus λ  plot (first order correction)………….…………….…………….47 

Figure. 2.5 Energy versus electric field plot (first order)………………………..……………..48 

Figure. 2.6 Energy versus λ plot (second correction)……………..………….……………….50 

Figure. 2.7 Energy versus λ plot ( The dash line represents the first order and the solid line is 

the second order)……………………………………………………………………………...51 

Figure. 2.8 The effect of defects in the variation of the Gibbs free energy………...…………..55 

Figure. 2.9 Possible way of the electron motion between the four cations …………………….56 

Figure. 2.10 The energy vs wave vector plot of the electron……………………….…………64 



 

vii 

List of tables 

Table.  2.1 The energy separating the levels………………………………………………….41      



 

viii 

Table of contents 

Abstract                                                                                                                                       ii  

Acknowledgments                                                                                                                       v 

List of figure                                                                                                                              vi 

List of tables                                                                                                                              vii 

Table of contents                                                                                                                      viii 

General introduction                                                                                                                 11 

References                                                                                                                                 12 

Chapter one: Defects in Materials 

1. Introduction                                                                                                                   14 

2. Definition of defects                                                                                                       14 

3. Defects types                                                                                                                  14 

3.1 Physical defects                                                                                                        14 

3.1.1 Localized defects                                                                                            14 

3.1.1.1 Point defects                                                                                            15 

3.1.1.1.1 Vacancy (Schottky defects)                                                          15 

3.1.1.1.2 Self-interstitial (Frankel defects)                                                  16 

3.1.1.1.3 Anti-site                                                                                             17 

3.1.1.2 Extended Defects                                                                                       18 

3.1.1.2.1 Dislocations                                                                                   18 

3.1.1.2.2 Edge Dislocations                                                                       20 

3.1.1.2.3 Screw Dislocations                                                                         22 

3.1.1.2.4 Mixed Dislocations                                                                         23 

3.1.1.2.5 Internal Boundaries                                                                        24 

3.1.1.2.6 Low-Angle Grain Boundaries                                                           25 

3.1.1.2.7 Twin Boundaries                                                                            26 

3.1.1.2.8 Antiphase Boundaries                                                                      27 

3.1.1.2.9 Volume Defects                                                                                28 

3.1.2 Non localized defects                                                                                      28 

3.1.2.1 Phonons                                                                                                         28 

3.1.2.2 Electronic defects                                                                                   29    



 

ix 

3.1.2.3 Excitons                                                                                                         29 

3.1.2.4 Color center                                                                                                    30 

3.2 Chemical defects                                                                                                       31 

4. Defects in titanium dioxide                                                                                             31 

4.1 Intrinsic defects                                                                                                        31 

4.1.1 Oxygen vacancies                                                                                         32   

4.1.2 Titanium vacancies                                                                                        32 

4.1.3 Oxygen interstitial                                                                                         32 

4.1.4 Titanium interstitial                                                                                       32 

4.2 Extrinsic defects                                                                                                        32 

5. Influence of defects point on the properties of titanium dioxide                                    33 

6. Conclusion                                                                                                                        34 

References                                                                                                                                   35 

Chapter two: Theoretical Study of Color Centers in TiO2 Using Perturbations Theory 

and LCAO Methods 

1. Introduction                                                                                                                       38 

2. Vacancy’s electron                                                                                                          38 

2.1 Introduction                                                                                                                 38 

2.2 Particle in box model                                                                                                    38 

2.3 Perturbing a box                                                                                                         42 

2.4 Tool of perturbation theory                                                                                          44 

2.5 Correction of the energy                                                                                             45  

2.5.1 First order correction                                                                                          45 

2.5.2 Second order correction                                                                                  48 

2.6 Correction of the wave function                                                                                   51 

2.7 Conclusion                                                                                                                    52 

3. Cations’s election                                                                                                             53 

3.1 Introduction                                                                                                                   53 

3.2 Defect equilibrium                                                                                                    53 

3.3 Bond model                                                                                                                56 

3.4 Effective mass                                                                                                            63 

3.5 Conclusion                                                                                                                66 



 

x 

 

References                                                                                                                                                67 

General conclusion and perspective                                                                                                  69 



 

11 
 

General introduction  

    Metal oxide materials, such as TiO2, ZnO, CeO2, and SnO2, have attracted considerable 

research interest in the last years because of their great potential of applications in a lot of fields 

especially the photocatalytic oxidation of organic pollutants [1,2]. Compared to other metal 

oxide semi-conductors with wide bands gap (Eg), TiO2 has attracted attention due to its high 

stability, photocatalytic activity, non-toxicity, and biocompatibility. On the other hand, TiO2 is 

generally active under ultraviolet irradiation because of its Eg = 3.2 eV [1,3,4,5].    

It is well known in material sciences that no perfect crystal exists, however scientists deal with 

real ones that contain some alterations in the structure due to the human being, experiments and 

the environment [6]. These distortions are called defects, very important factors, that strongly 

affect the properties of any material and determine its applications [7].   The defects can be 

classified to different types according to some criteria and the most important of them are 

localized and non-localized [7]. The color centers (F+) belong to non-localized defects and they 

are responsible for the change in the coloration of the crystal. Since the very beginning of the 

theory of defects, the F+ center has been extensively studied [7,8].  

    Many researchers focused on the wave function of the trapped electron [8]. This theoretical 

research is divided into two chapters. In the first one of this work, we classified and defined the 

defects that we might find in all crystals including color centers. The second chapter contains 

two parts where the F+ center was studied using two different ways. In its first part we recall 

the particle in a box model [7] that has been proposed to understand the wave function of the 

trapped electron and we tried to know how the wave function and the energy of the electron act 

under an electric field using the perturbation theory [9]. On the other hand, the second part 

studied the electron existing in one of the four titanium cations (Ti+4) surrounding the oxygen 

vacancy [10]. A model has been proposed, to understand the movement of the electron existing 

in the cations, based on the linear combination of atomic orbital (LCAO) and the effective mass 

theory with some approximations [11,12]. 

   Finally, we will conclude with the new understanding of the electron moving in Ti+4 ions 

surrounding the F+ center, which we got from the proposed model and some additional future 

perspectives. 
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1. Introduction  

    When every atom is in its position in the crystal lattice, then we have a perfect crystal which 

means conserving the periodicity in the three directions of the space. But unfortunately, there 

are always some atoms occupying other sites after leaving their normal places giving a real 

crystal that we are dealing with every day. When atoms are in different places this creates 

defects. In linguistics, defects are negative things, however in science they can turn out to be so 

good and useful. Nowadays defects are a pretty good factor very well used to change the 

properties of the real crystal [1]. Thus defects can be important for so many things that give a 

new version to materials and control them. In this chapter we are going to discuss the defects 

that we may find in the crystals and see how they can act on them as well. 

2. Definition of defects 

    Defects in crystals are all what make the crystal imperfect. In other words, the defects are a 

couple of phenomena that disturb or cut the periodicity of the crystal. Despite the linguistic 

meaning of defects, it is totally different in terms of physics; because they give some interesting 

properties to the materials [1]. According to some parameters; defects are classified into 

categories or types. 

3. Defects types 

    All the things in the world have types or a different sub-thing. And speaking about defects, 

it also has sub-defects that we are going to mention in this section. The major types are physical 

and chemical defects. 

3.1  Physical defects 

    We can also call them intrinsic defects. These ones have to do only with crystal itself. That 

means it does not change the chemical composition of the crystal. And we can divide them into 

two parts. 

3.1.1 Localized defects 

    This part of physical defects is localizable in the crystal. In other words, we can say that this 

kind of defects is sitting on small region that can be known and it is divided into two parts. 
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3.1.1.1 Point defects 

    Point defects are atomistic ones called a zero dimension (0 D) defects. It could be a vacant 

site or self-interstitial atom or ion. They occur while the growth of the crystal or it could be 

thermally produced. In other words, heating the system or irradiating it by light can lead to the 

creation of point defects due thermal or optical energies respectively [2]. 

3.1.1.1.1 Vacancy (Schottky defects) 

    This kind of defect is an unoccupied site in the real crystal, but it is supposed to be occupied 

in the perfect crystal. When the atom moves from its position travelling in the crystal, it 

probably goes to the surface, but it leaves behind an empty place called a vacancy, represented 

by a letter (V). This kind of defect (Schottky defect) is illustrated by fig. 1.1. 

If we have a stoichiometric crystal MX; the event of formation of an anion vacancy will 

happen simultaneously with the event of formation of a cation vacancy. After these two events; 

both (anion and cation) go to the surface. And we can describe this process by the following 

way. 

                
in the crystal in the crystal in the surface of the crystal( ) ( ) ( )M X M X M XM X V V M X            (1.01) 

When an anion X and a cation M move from the bulk to the surface, that means those two 

atoms are still in the crystal. This means we can remove from the both sides of the equation 

(1.01) to become an equation for a quasi-chemical reaction of defects formation. 

                               0(zero = perfect crystal) M XV V                                                      (1.02) 

 This kind of defects can be found in the following crystals: NaCl, TiO, BeO, CaO, SrO, 

CsCl [1]. 
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Fig.  1.1 Schottky defect [19]. 

3.1.1.1.2 Self-interstitial (Frankel defects) 

    This type of defect is known as a Frankel defect. It is about the self-occupied interstitial sites 

in the real crystal (self-occupied means that the interstitial sites should be occupied by the same 

atoms of the crystal); while it is normally empty in the perfect crystal. Moreover, it could be 

thought of as a superposition of Schottky defect and Frankel one. Because the atom existing in 

the interstitial site has already left a vacancy behind. These sites are too numerous. And let’s 

take NaCl as an example, on one hand, all the (Na) cations are on the octahedral sites (O) of the 

anionic network. On the other hand, there are tetrahedral sites (T), with populations equal to 

twice the number of the octahedral sites. The process of passing a cation from a normal site to 

an interstitial site is represented by the symbol ( iV ). As a result, this process gives a cation 

vacancy.     

                                      i M i MV M M V                                         (1.03) 

                                       (T)         (O)                   (T)             (O) 

    They observed anionic interstitial in materials like: CaF2, SrF2, BaF2, UO2, CeO2, 

ThO2.Where the cationic interstitial in materials like: AgCl, AgBr, NaNO3, KNO3 [1]. 
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Fig.  1. 2 Frankel defect [19]. 

3.1.1.1.3 Anti-site 

    This defect is just the interchange between two neighbor atoms. A cation M will take the site 

of the anion neighbor X, and the X will go to the site of M as illustrated in the fig. 1.3. This 

type of defect was observed in the intermetallic compounds, and the compounds where the 

electronegativity of the atoms are quite the same. And most of them are with covalent bond. 

The equation of this process is given by. 

                                            M X X MM X M X                                                                       (1.04) 

    This defect showed up in the following materials. AuZn, GaP, GaS [1]. 
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Fig.  1.3 Anti-site defect [3]. 

3.1.1.2 Extended Defects                                                                                        

    Physicists do classified defects according to their dimensions. Where point defects are 

usually called zero dimension defects (0 D). Where extended defects are concerned about 1, 2 

and 3 dimensions, they can be named also linear, planar and volume defects. We are going to 

explore them in this section [5]. 

3.1.1.2.1 Dislocations 

    Dislocations are considered as a linear defect. Researchers observed them experimentally 

after they had expected them theoretically. This type of defect is the weakness of the metals. 

Most of the material's deformation is caused by the movement of dislocations. However, if the 

movement of the dislocations is impossible; the materials become hard and tough. Since 

dislocation is a linear defect so it is characterized by a line of disruption. This line has three 

possibilities to end up. The first one is to end on the surface, the second one is to end in another 

dislocation, or to form a closed loop. People have seen closed loops in the crystal. 

    The enthalpy is the energy to create Schottky and Frankel defects, and it always gets balanced 

by the entropy in the case of these point defects. Dislocation also needs a creation enthalpy. But 

the enthalpy to create a dislocation is much higher than the enthalpy to create a point defect. So 

the entropy could not cancel the creation enthalpy of a dislocation. This means  
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that the dislocations are never in the equilibrium with their surroundings. The dislocation is 

characterized also by a Burger vector [4]. 

 

 

Fig.  1.4 Electron micrograph showing a dislocation in silver, imaged as a dark line [4]. 

 Burgers vector 

    The Dutch physicist Jan Burgers realized that dislocations characterized by a vector labeled 

(b) that represents the magnitude and the direction of the lattice distortion of a dislocation in a 

crystal lattice [6].    

    And by playing with the burgers vector directions, we can distinguish two types of 

dislocations: the edge dislocation and the screw dislocation. 
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3.1.1.2.2 Edge dislocations  

    They considered as a simple linear defects. They have an extra half plane of atoms 

inserted into the crystal as illustrated in fig 1.6.   

 

 

Fig. 1.5 An edge dislocation in cadmium telluride, CdTe [4]. 
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Fig.  1.6 An edge dislocation in a monatomic crystal [4]. 

Moreover, the edge dislocation’s burgers vector is perpendicular to the dislocation line, as 

shown by fig 1.7. 

The plan which separates the two parts of the crystal, with and without the extra half-plane 

is called the slip plane. The slip plane represents the deformation of the crystal because of the 

stress applied [4]. 

 

Fig.  1.7 Edge dislocation [20]. 
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3.1.1.2.3 Screw Dislocations 

    Due to a stress on the surface of the crystal screw dislocation formed. And it looks like a 

scroll stair. In other words, it is a couple of distorted parallel atom planes. And we can create a 

screw dislocation by cutting the crystal into two parts and keep sliding the two parts in the 

opposite way to each other. Like what happened in fig 1.8 [4]. 

 

 

Fig.  1.8 The atom planes spiral around the dislocation line [4]. 

    As we mentioned before the burgers vector plays a role determining the type of dislocation. 

And in the case of the screw dislocations, the burgers vector (b) is parallel or antiparallel to 

dislocation line (I) [5]. 
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Fig.  1.9 Screw dislocation [20]. 

3.1.1.2.4 Mixed Dislocations 

    We discussed two cases of dislocations where the burgers vector was either perpendicular or 

parallel to the dislocation line. But this case has both characters. The place of this dislocation 

has a superposition of edge and screw dislocation. This complicated phenomenon is illustrated 

in fig 1.10 [4]. 
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Fig.  1.10 Mixed dislocation [20]. 

3.1.1.2.5 Internal Boundaries 

    Most of the crystals look like a single crystal. But when doing the X-ray diffraction, it is 

realized that most of the crystals have internal boundaries. This is a 2-dimensions defect. It is a 

surface between two domains in the same crystal. 

    As all the defects, this type changes the properties of the crystal as well. Furthermore, most 

of the internal boundaries are a planar, but curved boundaries may occur sometimes [4]. 

 

 

 

 



Chapter one   Defects in Materials  

25 
 

 

Fig.  1.11 Planar defects in solids: boundaries between slightly misaligned regions or 

domains [4]. 

3.1.1.2.6 Low-Angle Grain Boundaries 

    Burgers said that low-angle boundaries between neighboring crystallites or crystal grains 

made up by dislocations matrices. That is what makes this kind of defect a two-dimension 

defect. The fig.1.12 represents the simplest example of Burgers model of a grain boundary [6].  

 

Fig.  1.12 Low-angle grain boundary [6]. 
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3.1.1.2.7 Twin Boundaries 

    This planar defect is corresponding to two intergrown crystals related with each other by 

reflection, rotation, or inversion. When the contact between the two twins is a well-defined 

plane (which is not always true), the boundary is called a composition plane. Fig. 1.12 indicates 

reflection twin boundaries, where one of the twins is the mirror image of the other. The mirror 

plane separating the two twins is usually called the twin plane. When these twins are repeated 

more than two so polysynthetic twins are formed [4]. Fig. 1.14 illustrates a polysynthetic twin.   

 

 

Fig.  1.13 Twin plane in rutile, TiO2 [4]. 
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Fig.  1.14 Polysynthetic twinning [4]. 

3.1.1.2.8 Antiphase Boundaries 

    Antiphase boundaries (APBs) should be thought of as displacement boundaries within a 

crystal. This planar defect is characterized by a vector (R) parallel to the boundary, which can 

distinguish a displacement of one part from the other. Another way to think about APBs in 

cubic close-packed metal crystals is to consider them as faults that came from the movement of 

a partial dislocation. 

    The stacking sequence of the cubic close-packed metal atom is . . . ABCABCABC. . . and it 

is going to be in the following sequence after the disruption . . . ABCACABC. . . where the 

antiphase boundary is sitting between the layers in bold type. And they called deformation 

stacking faults, because they can occur during a plastic deformation of a crystal [4]. 
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Fig.  1.15 Antiphase boundaries [4]. 

3.1.1.2.9 Volume Defects  

    Each volume that has different structures; orientation or state variables (e.g. magnetic or 

polarization alignment) compared to the native crystal is called a volume defect [5]. They can 

be like micro-cavities, voids….     

3.1.2 Non localized defects 

    The second part of the physical defects is not localizable in the crystal. We can distinguish 

three of them phonons, electronic defects and color centers. 

3.1.2.1 Phonons 

    Many books define the phonon as a quantum of vibrational energy, but the vibration carries 

more than just energy. It has crystal momentum also. So we can say that phonon is a discrete 

quantum of vibration [7]. 

    The truth of the matter, phonons are due to the vibration of a crystal lattice with a frequency 

ω. And if we think about that process quantum mechanically, we will figure out that it is just a 

harmonic oscillator and it has discrete energy eigenstates given by the following equation [8]. 
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                                                     1
2n n                                                                               (1.05) 

Each excitation in the quantum number (n) is a photon. This looks similar when giving a 

definition of the photons, so one may think about phonons as a quantized wave, or as a particle. 

While thinking about it as a particle we figure out that it is possible to put more than one particle 

in the same state. And to sum up this paragraph, we say phonons are bosons just like photons 

[7]. 

3.1.2.2 Electronic defects 

    In semiconductors, all electrons are in the valence band when the temperature is 0 K. but 

once we raise the temperature above the absolute zero some of the electrons go to the 

conduction band and leave behind holes with positive charges. If we put this semiconductor in 

an electric field the electrons move in one way and the holes in the opposite way. This is what 

is called electronic defects [9]. 

3.1.2.3 Excitons 

    When heating a semiconductor with photons their energy is just below the energy gap of the 

semiconductor, electrons get kicked out from the atoms but they are still related with their 

previous places which are holes. Electron-hole bound by an electrostatic coulomb force because 

of their opposite charges. The pair of electron-hole is called an exciton. Another way to think 

about it, excitons are similar to the hydrogen atom, by considering the hole as a proton. The 

binding energy of the electron-hole pair is the difference between the energy of the photon 

absorbed and the energy gap. This energy is ranging between 1 meV to 1 eV. The fig 1.16 

shows the energy levels introduced, in the band gap, by the excitons. This is called exciton 

levels. 

 

Fig.  1.16 Energy levels of exciton [6]. 
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    Excitons can transport energy by moving around in the crystal but they cannot transport 

charge because it is electrically neutral. 

    We can find Excitons in every insulating crystal. However, all of them are unstable due to 

the recombination process. We can also find two excitons together to make something they 

call bi-excitons. 

    Furthermore, we can think about the excitons in two different ways [6]. 

-      Frenkel exciton which is small and has a tight bond as shown in fig 1.17(a). 

-      Mott an Wannier exciton which is large than the lattice constant and has a weak bond 

illustrated in fig 1.17(b).   

 

 

Fig.  1.17 (a) Frankel exciton, (b) Mott and Wannier exciton [6]. 

3.1.2.4 Color center 

This defect is known also as (F) center. It is due to the absence of negatively charged ions. so 

inside the vacancy there is a positive charge which may attract electrons. Depending on the 

number of electrons attracted to the vacancy we can distinguish 3 F's centers [10]. 

-            F++ center; if the vacancy didn’t attract any electron which means the vacant site is 

empty. 

-            F+ center; if the vacancy is full only by one electron (the vacant site attracts one 

electron only)      
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           -      F center; in the vacancy has two electrons in it (the vacant site is compensated by a 

pair of electrons) 

 

 

Fig.  1.18 The types of the F center [10]. 

3.2 Chemical defects 

    Chemical defects, or extrinsic defects. The reason for this name is the change of the 

components of the substance. The change may be by impurities (accidentally foreign atoms) or 

by doping (introducing foreign atoms in the crystal by different techniques).and it could be in 

0, 1, 2 or 3 dimensions. These defects will lead to the change in the properties of the material 

[11] like changing the conductivity of a semiconductor, its color, …. 

4. Defects in titanium dioxide 

    As every crystal, titanium dioxide has defects also. We can split them into two parts. In one 

hand the intrinsic defects and on the other hand the extrinsic defects. We are going to talk about 

this in the following section. 

4.1  Intrinsic defects 

    As we mentioned before the intrinsic defects are generated from the crystal itself due to some 

external factors like heat. And in the case of our crystal (TiO2) we are going to discuss four 

intrinsic defects and they are oxygen vacancies, titanium vacancies, oxygen interstitial and 

titanium interstitial [10]. These are zero dimension defects. 
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4.1.1 Oxygen vacancies 

    When the oxygen atom leaves its place for some reasons, it leaves behind a vacant site. That 

vacancy is a defect and called an oxygen vacancy. In another word it is just a missing oxygen 

ion from the lattice site. And we can label it using the Kroger-Vink notation by oV  , ( ( ′ ) means 

negative and (  ) means positive, according to Kroger-Vink notation.). Now the defect 

equilibrium of oxygen vacancy ( oV ) formation is given by [10]. 

                             2
12

2o o
O V e O

                                                 (1.06) 

4.1.2 Titanium vacancies 

    The vacant site where the titanium atom supposed to be, is a titanium vacancy. And according 

to Kroger-Vink its notation is Ti . And the equilibria equation is [10]. 

                              2 22 4
Ti

O O V h

                                                      (1.07)                             

4.1.3 Oxygen interstitial 

    The notation on the oxygen interstitial is 
iO  . When an 2O  ion is in an interstitial site we get 

this defect. And its equilibrium equation is the following [10]. 

                                  2
1 2

2
x

i iV O O h                                             (1.08) 

4.1.4 Titanium interstitial 

    We have this defect if a cation 4Ti   occupies an interstitial site and one can label this process 

by i

iTi  and its equation is as below. 

                                 
22 3o Ti iO Ti Ti e O                                                      (1.09) 

4.2 Extrinsic defects 

    Beside the impurities in the titanium dioxide, researchers have doped it by different atoms. 

In 2018 M. R. Elahifard et al [12], saw Effects of Ni-doping on the photo-catalytic activity of 

TiO2 anatase and rutile by simulation and experiment. Where S. Sood et al looked for the highly 

effective Fe-doped TiO2 nanoparticles photocatalysts for visible light driven photocatalytic 

degradation of toxic organic compounds in 2015 [13]. Before that P. Nyamukamba et al 

highlighted the influence of carbon doping on TiO2 nanoparticle size, surface area, anatase to 
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rutile phase transformation and photocatalytic activity in 2012 [14]. This is the most recent 

experiment that has been done on titanium dioxide. And because the TiO2 has a lot of 

applications, there are many more doping experiments on it like noble metals doing (Pt, Ag, 

Au, Pd, Ni, Rh and Cu), metalloids like (boron) and anions [15].     

5. Influence of point defects on the properties of titanium dioxide 

    As reported in the definition, in general defects give new properties to the crystal. If one 

begins with intrinsic point defects in the titanium dioxide, the oxygen vacancies and titanium 

interstitials make it an n-type semiconductor where titanium vacancies make it sort of p-type 

semiconductor [16]. When the concentration of oxygen vacancies defect increases, the 

vacancies start to be ordered therefore, new phases of titanium oxides occur. Moreover, the 

increase of the oxygen vacancies reduces the large band gap of our crystal which is equal to 3.3 

eV [10]. Another type of point defect is presented by the transformation of Ti4+ to Ti3+. Where 

the cation Ti3+ gives to the crystal the blue coloration or coloration center, moreover, Ti3+ can 

absorb visible light spectrum, [17] and reduce the band gap just like the oxygen vacancies do.  

    These defects can change the electrical behavior of the titanium dioxide. Generally, titanium 

dioxide is a semiconductor or an insulator for higher content of oxide but for lower content of 

oxide it turns to metallic [10]. 

    Titanium dioxide has a lot of applications like dye–sensitized solar cells, hydrogen 

production, hydrogen storage, sensors, batteries, cancer prevention and treatment, antibacterial 

and self–cleaning applications, electrocatalysis and photocatalytic applications [18], therefore 

scientists have been trying to improve its efficiency in all the different applications. So they 

exploit the point defects of the crystal and they introduce another type of atoms in the lattice, 

that is what we call doping. They saw how they improve the efficiency of the titanium dioxide 

in all its applications. 

    Starting with the C-doped TiO2 (carbon), where the carbon atoms help the crystal to absorb 

more visible light that make a TiO2 better in photocatalytic [14]. Moving now to the Fe-doped 

TiO2 nanoparticles, here the iron atoms play an important role reducing the recombination of 

recombination of charge carriers (electrons and holes) therefore enhancing the photocatalytic 

behavior of our material [13]. We mentioned just a few influences in this section, but still many 

others that are not going to be mentioned here. To conclude this section, we can use the point 

defects to make our material useful for any application mentioned above. 
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6. Conclusion 

    We have been trying to talk about all the defects that may occur in the crystal, and we 

discussed many of them with all their different types. Finally, we came up with a result that 

there is no perfect crystal. The sum of perfect crystal and defects is called a real crystal. In the 

next chapter we are going to study the F+ center by some methods such as the theory of 

perturbation and see how they behave under the application of an electric field and will we try 

to give them a new definition.   
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Chapter two 

Theoretical Study of Color Centers in 

TiO2 Using Perturbations Theory and 

LCAO Methods 
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1. Introduction 

    TiO2 is used in a lot of applications [1] and it is an ionic crystal [2]; that means it contains 

color centers due to the oxygen vacancies. We already mentioned the importance of defects [3] 

and the different color centers which are F, F+ and F++ centers [4] (section 3.1.2.3 chapter 1). In 

this chapter we are going to study the F+ center, which is just an electron trapped in the oxygen 

vacancy plus one electron sits on one of the four titanium cations surrounding the first electron 

(three of the titanium cations are Ti4+ and one of them is Ti3+). This study is divided into two 

parts. In the first one, we are going to study the electron located on the oxygen vacancy with 

some conditions using the particle in a box model and the perturbation theory [5]. In the second 

part, we are going to use the linear combination of atomic orbital (LCAO) [6] and the effective 

mass [7] theory to study the electron which is on the Ti4+ to make it Ti3+. Finally, we mention 

in the conclusion the new result that we came up with. 

2. Vacancy’s electron 

2.1 Introduction 

     In this part we are going to study the electron existing inside the oxygen vacancy in an 

electric field using the perturbation theory.  

2.2 Particle in a box model 

    After discovering the F center in 1937 by subjecting alkali halides to the action of the X rays 

[8]. Researchers started thinking about the wave function of the electron moving around in the 

vacancy [9]. One of the models they gave to it is the particle in a box model (quantum dot), by 

considering the length of the box is the lattice parameter (a). They begin with the potential V = 

0 if 0 x a , 0 y a  and 0 z a , otherwise the potential is infinity as represented in fig 

2.1[10]. 

 



Chapter two   Theoretical study …….Methods 

39 
 

 

Fig. 2.1 Quantum dot of an F+ center. 

 We can find the wave function of this particle in this box by solving the time independent 

Schrodinger equation with this potential [11].  

                              
2 2 2 2

2 2 2
( , , ) ( , , )

2
x y z E x y z

m x y z
 

    
   

   
                                    (2.01) 

Where (m) is the mass of the electron,  , ,x y z  is the wave function, E the energy and h is 

the Planck’s constant. The easiest way to solve (2.01) is using the separation of the variables x, 

y and z so the wave function can be written as indicated below [12]:  

                                             ( , , ) ( ) ( ) ( )x y z x y z                                                             (2.02) 

and 

                                                      x y zE E E E                                                                            (2.03) 

After replacing (2.02) and (2.03) in (2.01) and comparing both sides of the equation we obtain 

the following three equations.                                 

                                                  
2 2

2
( ) ( )

2
xx E x

m x
 

  
 

 
                                                           (2.04) 
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2 2

2
( ) ( )

2
yy E y

m x
 

  
 

 
                                                            (2.05) 

                                                 
2 2

2
( ) ( )

2
zz E z

m x
 

  
 

 
                                                             (2.06) 

The solutions of the three equations are well known. We replace them in (2.02) and the wave 

function of the particle is going to be the following. 

                                    31 2

3

8
( , , ) sin( )sin( )sin( )

nn n
x y z x y z

a a a a

 
                                 (2.07) 

This wave function is associated with quantized energy levels written as follows. 

                                                 
1 2 3

2 2
2 2 2

, , 1 2 32
( )

2
n n nE n n n

ma


                                                         (2.08) 

We can plot the energy levels and get what represented in fig. 2.2. 
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Fig. 2.2 The energy levels of a quantum dot. 



Chapter two   Theoretical study …….Methods 

41 
 

From (2.08), we clearly see that the energy can have the same value for different n1, n2 and n3 

which means the existence of more than one wave function for the same energy. This energy 

level is degenerated and the number of degeneracy is g. But when 1 2 3n n n  , the energy level 

is not degenerated because we have only one wave function that corresponds to this level. The 

table 2.1 represents the differences of the energy levels. 

Table 2.1 The energy separating the levels. 

Levels corresponding The differences of the energy 

levels ( E ’s) (eV) 

Wavelength (nm) 

2,1 2 1E E E         5.38775 230.59477 

3,1 3 1E E E    10.77551 115.29738 

3,2 3 2E E E    5.38775 230.59477 

4,1 4 1E E E    14.36734 82.47303 

4,2 4 2E E E    8.97959 138.35685 

4,3 4 3E E E    3.59183 345.89222 

 

    This is how they simulate the F+ center as a quantum dot, and they got its wave function and 

its energies also. The electron gets excited by absorbing photons and goes to higher levels and 

on its way back it will release some photons (may or may not be with same wavelength of the 

incident photons) and gives a nice coloration to the crystal [10]. So we see that the F center 

plays an important role in giving color and this is the reason why it is called color center. In this 

case the trapped electron was free in the box. It is really important if we can get knowledge 

about the behavior of this electron when applying an exterior force using an electric field for 

example. 

    In the next section we are going to perturb this box by an electric field and calculate the new 

energy and wave function of the ground state. 
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2.3 Perturbing a box 

    We assumed in the previous section that the F+ center is a quantum dot. And now we are 

going to perturb it by a constant electric field pointing on the x direction. The fig. 2.3 is 

representing perturbation method. 

 

Fig. 2.3 Perturbation of the F+ by a constant electric field. 

0x  : The position of the electron when all the neighbors are identical (without electric field).   

                                                              0

1

2
x a                                                                               (2.09)                                                                                                                                                 

eqx  : The position of the equilibrium in this case (without electric field) we are going to call it 

G. 

maxx  : The position of the electron when the electric field reaches its maximum. 

 a db


 : The lattice parameter. 

First we are going to calculate the distance between 0x  and eqx ( the equilibrium position) 

without electric field we can call it x . 

Using a simple mathematical tool, we have then. 
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                                                         b

b d

f
dG db

f f

 




                                                                         (2.10)   

dG


 : The victor of distance between the atom (d) and the position (G). 

db


 : The victor of distance between the atom (d) and the atom (b) and it equal to the lattice 

parameter (a). 

df : The force of the atom d on the electron sitting on 0x and it is: 

                                                          

2

2

4

( / 2)
d

q
f k

a
                                                                            (2.11) 

bf  : The force of the atom b on the electron sitting on 0x  and it is equal. 

                                                          

2

2

3

( / 2)
b

q
f k

a
                                                                               (2.12) 

If we use the rutile TiO2 lattice parameter a = 0.4584 nm. 

So  

                                                      df  = 1754.337*10-11 N 

And  

                                                       bf  = 1315.753*10-11 N 

Then 

                                                           0.4285dG db
 

                                                         (2.13) 

So the distance dG


 is equal to 0.1964 nm. 

We have  

                                                               0x x dG


                                                         (2.14) 

So 

                                                            x = 0.03272 nm 
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    Now if we turn on the electric field, the force of the atom (d) will be supported by the force 

of the electric field applying on the electron so d b fF f eE  . The new equilibrium position of 

the electron will depend on the electric field. But if we make the electric field big enough the 

electron will leave the oxygen vacancy and our proposition or experiment will be boring. So 

there is a maximum value of the electric field maxE equal to. 

                                                    
max

0.1964b

d b

f

f f eE


 
                                                                 (2.15) 

So  

                                                   maxE = 2.2682896*1011 V/m 

    Now the electric field goes from 0 to maxE . Beyond maxE  the electron will leave the vacancy 

and it will be no F+ center. 

                                                        max0 E E                                                                      (2.16)   

This electric field will make a potential inside the box equal to. 

                                                         V eEa                                                                                 (2.17)   

e  : The charge of the electron. 

a  : The lattice parameter. 

    This potential may change the energy of the states. For example; the ground state and the 

first excited state. It may then also change the wave functions of the states. And in order to 

figure out the new energies and the new wave functions, we are going to use a quantum 

mechanical tool which is the non-degenerate perturbation theory indicated in the following 

section. 

2.4 Tool of perturbation theory 

    There is no exact solution for any physical problem because a lot of factors are neglected to 

simplify the mathematics. In order to find the new energy and wave function of the ground 

state. We have to use one of the approximation methods.  

   Physicists use the perturbation theory once we have an extra term in the Hamiltonian H

where the extra term is too small compared to the original Hamiltonian 
(0)H  [13]. 
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                                                            (0)H H                                                                      (2.18)   

    This theory has two types; the time dependent perturbation theory [14] and the time 

independent perturbation theory. The last one is divided into two parts; the non-degenerate and 

the degenerate theory [13]. In this work we are going to use the non-degenerate theory for the 

non-degenerate ground state of our system. 

2.5 Correction of the energy 

    After perturbing the system by a constant electric field directed on the x direction, so: 

                                                              fE E i
 

                                                                                   (2.19)   

The new Hamiltonian of the system is going to be written in the following way. 

                                                         (0)( )H H H                                                                       (2.20)   

(0)H  : The well-known free electron Hamiltonian  

                                                          
2

(0)

2

p
H

m
                                                                         (2.21)    

H : The perturbation Hamiltonian. In the case of an electric field fE  is going to be. 

                                                          
fH qE a                                                                       (2.22)    

  : A mathematical parameter to make the perturbation small enough and it defined as follows.

 0,1  

2.5.1 First order correction of the energy 

    Since the Hamiltonian was in term of the mathematical parameter  , as a result the energy 

is going to be in term of   also and it will be like shown in the equation below [13]. 

                                                       (0) (1)

1 1 1( )E E E                                                                         (2.23)    

(0)

1E  : The ground state energy without perturbation. 

                                                       
2 2

(0)

1

3

2
E

ma


                                                                                     (2.24)    

(1)

1E  :  The first correction of the energy. 
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                                                      (1) (0) (0)

1 1 1E H                                                                      (2.25)    

(0)

1  :  The unperturbed ground state wave function. 

Since it is the ground state wave function so 1 2 3 1n n n    . 

                                          
(0)

1 3

8
sin( )sin( )sin( )x y z

a a a a

  
                                                   (2.26)    

Our aim now is to calculate the energy correction (1)

1E  and to do so we are going to solve the 

equation (2.25). 

                                          (1) (0) (0) (0)* (0)

1 1 1 1 1

0

a

E H H d                                                     (2.27)    

Where   

                                                               d dxdydz                                                                       (2.28)    

 Now let’s plug   in the equation (2.27). 

          
(1)

1 3 3

0

8 8
sin( )sin( )sin( )( ) sin( )sin( )sin( )

a

fE x y z qE a x y z d
a a a a a a a a

     
      (2.29) 

We can simplify this equation to get the next equation.     

                                  (1) 2 2 2

1 2

0

8
sin ( )sin ( )sin ( )

a
fqE

E x y z d
a a a a

  



                                           (2.30) 

After doing the integral we are going find the following equation.     

                                                   
3

(1)

1 2

8

8

fqE a
E

a

  
  

 
                                                                       (2.31)    

Finally, we have the energy correction given by. 

                                                        
(1)

1 fE qE a                                                                            (2.32)    

Now we can write the total energy with the first correction only in this way. 

                                                 
2 23

( )
2

fE qE a
ma


                                                                  (2.33)    
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Because the charge of the electron is negative so the first correction shifted up the energy of the 

ground state. 

By fixing some factors we can draw ( )E   and ( )fE E plots in fig. 2.4 and fig. 2.5 respectively.  
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Fig. 2.4 Energy versus   plot (first order correction). 
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Fig. 2.5 Energy versus electric field plot (first order). 

   The first order correction of the energy gives the exact true energy of the non-degenerate 

ground state. Moreover according to these two plots, theoretically every possible value of the 

electric field associated with a small value of the factor   to be as a perturbation. But if the 

electric field exceeds the maxf
E then the trapped electron leaves the box and we cannot apply 

the perturbation theory. 

2.5.2 Second order correction of the energy 

    We have seen the first correction and now we are going to see the second correction of the 

energy. Starting the energy equation. 

                                               (0) (1) 2 (2)

1 1 1 1( )E E E E                                                    (2.34) 

Where (2)

1E is the second correction of the energy.  
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2
(0) (0)

1(2)

1 (0) (0)

1

k

k k

H
E

E E

  



                                                               (2.35) 

To know what the second energy correction is we have to solve the equation (2.35) as well. 

In order to that we have to do it step by step as follows. 

(0) (0) 31 2
1 2

0

8
sin( )sin( )sin( )sin( )sin( )sin( )

a
f

k

qE kk k
H x x y y z z d

a a a a a a a

   
   


     (2.36) 

Now we have to put the second power to our equation and separating the variables x, y and z 

we get the following equation. 

2 2 22 2
2

(0) (0) 2 2 2 2 2 231 2
1 4

0 0 0

64
sin ( )sin ( ) sin ( )sin ( ) sin ( )sin ( )

a a a
f

k

q E kk k
H x x dx y y dy z z dz

a a a a a a a

   
  

 
  

  
    

                                                                                                                                             (2.37) 

After integrating the equation (2.37) we got. 

                                             

2 2 6
2

(0) (0)

1 4

64

64

f

k

q E a
H

a
  

 
  

 
                                               (2.38) 

From the equation (2.38) we have.  

                                                  
2

(0) (0) 2 2 2

1k fH q E a                                                           (2.39) 

We did calculate the numerator. Now we have to simplify the denominator. 

So we have  

                                                      
2 2

(0) ( )

1 2
3

2

o

kE E k
ma


                                                           (2.40) 

Where k  represents the levels of all the possible transitions that may happened. 

                                                            2 2 2

1 2 3k k k k                                                            (2.41) 

After doing all the calculation we have now the second energy correction given by.  

                                                       
 

4 2 2

(2)

1 2 2

2

3

f

k

ma q E
E

k



                                                      (2.42) 
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Finally, the total energy is represented by the equation below. 

                                           
 

4 2 22 2
2

2 2

23
( )

2 3

f

f

k

ma q E
E qE a

ma k


  


  


                              (2.43) 

    By reducing the sum of the equation (2.43) to just one higher level so, 1k = 2, 2k  = 1 and      

3k  = 1. That means k will equal to 6 (equation (2.41)). The following figure representing the 

plot of previous equation after reducing the sum. 
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Fig. 2.6 Energy versus   plot (second correction). 

    Now this result tells us that the second order correction of the energy is shifting down the 

energy of the ground state unlike the first order. Fig. 2.7 shows the difference between the first 

and the second order correction.   
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Fig. 2.7 Energy versus   plot (The dash line represents the first order and the solid line is the 

second order) 

    If we think about another non degenerate level like (222) in terms of the second order 

correction; we will see that the levels below pushing the level up (giving it more energy) and 

the levels above pushing the level down (reducing its energy). Each level doesn’t want the (222) 

level to get more close to it, and that is what they call the levels repulsion [13].  

2.6 Correction of the wave function 

    As we mentioned before the wave function may or may not change due to the perturbation. 

In this section we will find out what will happen to the ground state wave function. And to do 

that we will write its equation in terms of    [13]. 

                                                    (0) (1)

1 1 1( )                                                              (2.44) 
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(1)

1  : The first correction of the wave function and it is given by the equation below. 

                                              

(0) (0)

1(1) (0)

1 (0) (1)
1 1

k

k

k k

H

E E

  
 



 


                                                     (2.45) 

Where  

(0)

k  : The unperturbed excited wave function.  

Our objective is to calculate (1)

1  and we will do that starting be calculating the numerator.     

(0) (0) 31 2
1 2

0

8
sin( )sin( )sin( )sin( )sin( )sin( )

a
f

k

qE kk k
H x x y y z z d

a a a a a a a

   
   


      (2.46) 

This integral is zero  

                                                     (0) (0)

1 0k H                                                                   (2.47) 

Thus; 

                                                              (1)

1 0                                                                                  (2.48) 

    The equation (2.47) introduces the orthogonality of the levels. And the whole result means 

that the ground state wave function doesn’t change due to the perturbation, but it remains the 

same unlike the energy.  

2.7 Conclusion 

    Beside the exact energy of the ground state given by the first order correction of the 

perturbation theory, the physicist R. Feynman says, “It doesn’t matter how beautiful your theory 

is. It doesn’t matter how smart you are. If it doesn’t agree with the experiment, it is wrong.” 

[15] These words fit our result. Furthermore, the second correction threw the light on one of 

the important results which is the levels repulsion. When we started looking for the correction 

of the wave function we found out that the energy levels are orthogonal to each other. This is 

all the results that we came up with in the first part of chapter two.  
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3 Cation’s electron   

3.1 Introduction 

    This part will be talking about the electron existing in one of the fourth cations surrounding 

the oxygen vacancy and its motion. Starting by the defects equilibrium to see why we need 

defects in the crystal to make it stable. 

3.2 Defects equilibrium 

    Gibbs free energy of any system is given by [16]. 

                                                           G H TS                                                                (2.49) 

Where ; 

- G : The Gibbs free energy.   

- H :  The enthalpy.  

- S  : The entropy.  

- T  : The temperature. 

The variation in Gibbs free energy due to the introduction of (n) vacancies in crystal with (N) 

sites is given by 

                                                        G H T S                                                                        (2.50) 

Where ; 

- G : The change in the Gibbs free energy.   

- H :  The change in the enthalpy.  

- S  : The change in entropy.  

The change in the entropy should be represented by the change in vibrational entropy and the 

change in the configurational entropy [10]. 

                                                  V CS n S S                                                                                (2.51) 

Where; 

- VS :  The change in the vibrational entropy.  

- CS : The change in the configurational entropy.   

- n : The number of defects. 
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Every point defect has a formation enthalpy considered the same for the defects of the same 

type, so the change in the Gibbs free energy is given now by the equation below. 

                                               ( )V CG n H T n S S                                                        (2.52) 

The configurational entropy is given by the Boltzmann equation [16]. 

                                                         ln( )CS k       (2.53)   
                                                                   

 

K is the Boltzmann constant, and  is the thermodynamic probability given by the following 

equation in the case of Schottky defects [17]. 

                                                          
( )!

! !

N n

N n



                                                                         (2.54) 

- N: The number of atoms. 

- n: The number of point defects. 

If we use Stirling approximation, we get. 

                                             ln( ) ln( )c

N n
S k N n

N n N n

 
      

                                         (2.55)  

At the end we get the Gibbs free energy by the equation below. 

                                ln( ) ln( )V

N n
G n H T n S k N n

N n N n

  
           

                     (2.56) 

If we draw these three plots; 

Y n H   , ln( ) ln( )V

N n
Y T n S k N n

N n N n

  
        

 , and ( )Y G n  . 
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Fig. 2.8 The effect of defects in the variation of the Gibbs free energy [18]. 

    From this plot we see that above 0 K the crystal needs a particular number of defects (the 

equilibrium number of defects) in order to get its stability. By differentiating the equation (2.56) 

with respect to the number of defects ( 0
G

n





) we get. 

                                                        .
VS H

k kT
eqn Ne e

 

                                                               (2.57) 

We can get rid of the term of VS  because it is pretty small so equation (2.57) is now as follow 

[10]. 

                                                         
H

kT
eqn Ne



                                                                     (2.58) 

    Defects are a pretty important factor for the stability of the crystal, because its role of 

reducing the Gibbs free, which is the main factor that characterizes the stability of the crystal; 

(The smallest Gibbs free energy is the more stable crystal is.)  

    But the important question now is the following “why do we need defects in the crystal to 

make it stable?!”. We are going to answer this question in the next section. 

 

 



Chapter two   Theoretical study …….Methods 

56 
 

3.3 Bond model 

    It was shown before that we are going to give a new definition to the F+ center. And to do that 

we propose this model of bond. This latter is based on two theories: the linear combination of 

atomic orbital and the effective mass. The model allows us to deeply understand the F+ center 

which is more than we were thinking. In this section we will go through the calculation of this 

model and see what this method gives a good result. 

    The F+ center is just one (1) electron sitting in the oxygen vacancy surrounded by 4 neighbors 

of Ti+4 or 3 neighbors of Ti4+ and one is Ti3+. The last cation should be thought of as Ti4+ plus 

one electron. Moreover, the cation Ti4+ is more stable than the cation Ti3+, so the last one wants 

to get rid of the extra electron to get more stable again. So we assume that those 4 cations 

neighbors of Ti are going to exchange the extra electron between them in order way and the 

energy needed for this phenomenon is very weak. This process is analogous to what is 

happening in the metallic bond. Where the electrons hop from one atom to another to lower 

their energy and form a strong bond, which is the metallic bond. And we can define the way of 

the electron hopping between the 4 cations in the fig.2.8. 

 

Fig. 2.9 Possible way of the electron motion between the four cations (The electron can move 

clockwise or anticlockwise) 
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    The electron wants to move to nearest neighbor without considering the direction it may 

move with it (The electron can move from Ti4+(1) to Ti4+(2) to Ti4+(3) to Ti4+(4) and gets back 

Ti4+(1) and keep moving in the circle, and it can also move in the opposite way.)   

|1 , | 2 , | 3 and | 4 are the kets representing the wave functions of the atomic orbitals if the 

electron sits in  the cations  Ti4+ (1), Ti4+ (2), Ti4+ (3), and Ti4+ (4) respectively. 

    Now we will ignore the interaction of the other atoms in the crystal lattice with the considered 

electron, and ignore also the nucleus-nucleus interaction between the 4 neighbors. We will just 

take in consideration the interaction of those 4 Ti+4 cations with the electron. We will also use 

the Born-Oppenheimer approximation to fix the nucleus of the 4 cations, and let the electron 

hops from one atom to another and we will start by the Hamiltonian. 

                                                     
2 4

1

)  ( 
2

j

j

p
H V r R

m 

                                                             (2.59) 

JR


 : The position of the atoms (nucleus). 

r


 : The position of the electron. 

We can abbreviate the Hamiltonian pieces to letters. 

                                                                  
2

2

p
k

m
                                                                               (2.60) 

And                                                 

                                                          
4 4

1 1

( )j j

j j

V r R V
 

                                                                     (2.61) 

Where  

                                                            
2

4
j

j

e
V

r R



                                                               (2.62) 

    One way to solve this Hamiltonian is to imagine that we have only one atom exist and it has 

an atomic orbital m  with an energy atomice  , so the Schrödinger equation will be as follows.  

                                                           ( )m atomick V m e m                                                     (2.63) 
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    Where atomice is the energy of the 4 orbital of the Ti. I.e., 1 is the 4s state of the Ti4+ (1). We 

assume that the orbitals are orthogonal to each other and to describe this orthogonality we use 

the equation below. 

                                                                  | nmn m                                                                         (2.64) 

    We are going to use LCAO to find the wave function of the electron moving between the 

four atoms. To do so, we have to write the trail wave function as a sum on the wave function of 

the four atomic orbitals with coefficients. 

                                                     1 2 3 41 2 3 4                                                    (2.65) 

In order to find this wave function, we have to use the effective Schrödinger equation given by 

the follow way [19]. 

                                                             nm m n

m

H E                                                                     (2.66) 

nmH   is the Hamiltonian represented by four by four matrix. 

Now if we use the way of only one atom exists again we can remove the interaction with mth 

atom from the sum of the Hamiltonian to become. 

                                                            
m j

j m

H k V V


                                                                 (2.67) 

 This time we will hit both side of the equation (2.64) by the ket m  to be as follows. 

                                                   ( )m j

j m

H m k V m V m


                                                       (2.68) 

Using equation (2.60) we can write. 

                                                    
atomic j

j m

H m e m V m


                                                          (2.69) 

Now we will hit the equation (2.66) by a bra of n to get. 

                                                 
atomic nm j

j m

n H m e n V m


                                                 (2.70) 

    This is very interested equation, and we have to define the second piece on right hand side.          
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 If n m then   
j

j m

n V m


 =  the interaction of the 3 atoms on the electron sitting on the fourth 

one is called 0V . 

    If n m then  
j

j m

n V m


   = t , this value of t  is the hopping because if we look to the 

time dependent Schrödinger equation one can take an electron on the site m and have an end 

up on the site n so this off diagonal term of the Hamiltonian allows the electron to hop from 

one site to another. Thus we call it hopping [19]. 

The energy of the hopping ranges between 0.1 to 0.5 eV [18]. 

But if 1m n so 0t    

Because very hard for the electron to hop so far. 

We will sum up all what we said about that piece in the equation below. 

                                         

0

1

0

j

j m

V n m

n V m t n m

otherwise





   



                                                         (2.71) 

By assuming that the value of (– t) is the same with every hop, we will get the following matrix 

element of the Hamiltonian. 

                   1 2 3 4 01 1 1 1 1 1 1 1 1 1 atomicH k V V V V e V                                (2.72) 

                   2 1 3 41 2 1 2 1 2 1 2 1 2 3H k V V V V t                                             (2.73) 

                   3 1 2 41 3 1 3 1 3 1 3 1 3 0H k V V V V          (2.74) 

                   4 1 2 31 4 1 4 1 4 1 4 1 4 3H k V V V V t                                             (2.75) 

                   
*

1 2 3 42 1 2 1 2 1 2 1 2 1 3H k V V V V t                                           (2.76) 

                   1 2 3 4 02 2 2 2 2 2 2 2 2 2 atomicH k V V V V e V                       (2.77) 

                    3 1 2 42 3 2 3 2 3 2 3 2 3 3H k V V V V t                                       (2.78) 

                    4 1 2 32 4 2 4 2 4 2 4 2 4 0H k V V V V                                          (2.79) 
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                     1 2 3 43 1 3 1 3 1 3 1 3 1 0H k V V V V                                          (2.80) 

                     
*

2 1 3 43 2 3 2 3 2 3 2 3 2 3H k V V V V t                                    (2.81) 

                     3 1 2 4 03 3 3 3 3 3 3 3 3 3 atomicH k V V V V e V                            (2.82) 

                     4 1 2 33 4 3 4 3 4 3 4 3 4 3H k V V V V t                                   (2.83) 

                     
*

1 2 3 44 1 4 1 4 1 4 1 4 1 3H k V V V V t                                   (2.84) 

                      2 1 3 44 2 4 2 4 2 4 2 4 2 0H k V V V V                                      (2.85) 

                      
*

3 1 2 44 3 4 3 4 3 4 3 4 3H k V V V V t                                       (2.86) 

                      4 1 2 3 04 4 4 4 4 4 4 4 4 4 atomicH k V V V V e V                      (2.87) 

We will sum up all these equations in the following matrix.  

                                             

0

*

0

*

0

* *

0

3 0 3

3 3 0

0 3 3

3 0 3

e t t

t e t
H

t e t

t t e

  
 
  
  
 
  

                                                             (2.88) 

Where 

                                                           0 0atomice e V                                                                   (2.89) 

To solve the Hamiltonian matrix, we have to diagonalize it using the equation (2.90). 

                                                            det( ) 0H I                                                                     (2.90) 

After calculating the equation (2.90) we get the following one: 

                                                    2 2 2

0 0( ) ( ) 36 0e e t                                                      (2.91) 

To find the eigenenergies we have to solve the equation above. One way to solve it is to divide 

it into two part as follow. 

                                                            2

0( ) 0e                                                                         (2.92) 

                                                        2 2

0( ) 36 0e t                                                             (2.93) 
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After we solved these two equations, we get the eigenenergies as follows. 

                                                             1 0 3e t                                                                                (2.94) 

                                                                 2 0e                                                                            (2.95) 

                                                              3 0 3e t                                                                                (2.96) 

    Now we are going to quote some names from the covalent bond, and we will call the 1  by 

the energy of the bonding state, 3 the energy of the anti-bonding state, while 2 is the energy 

of the intermediate state. 

    We found three energies of three states now it is important to find the wave function of the 

states. And to do that we have to use the new matrix written below. 

                                           

0 1 1

*

0 2 2

*

0 3 3

* *

0 4 4

3 0 3

3 3 0

0 3 3

3 0 3

e t t

t e t
E

t e t

t t e

 

 

 

 

     
    
     
     
    
      

                                      (2.97) 

In order to find the eigenfunctions [20] we have to find the  ’s of each state. And we will start 

be the first state using it energy below. 

                                                              1 1 0 3E e t                                                                         (2.98) 

After substituting the first energy in the matrix we found the following set of   ’s .   

                                                               1 2 3 4                                                                           (2.99) 

By this result the wave function of the bonding state is going to be as follows. 

                                                       1 1( 1 2 3 4 )                                                      (2.100) 

And in order to normalize the wave function we have to use the following equation.  

                                                        
2 2 2 2

1 2 3 4 1                                                           (2.101) 

Since all of them are equal to each other then. 

                                                                        
1

2
                                                                   (2.102) 



Chapter two   Theoretical study …….Methods 

62 
 

Our wave function will become as indicated in the equation (2.103). 

                                                         
1

1
( 1 2 3 4 )

2
                                                      (2.103) 

This is the wave function of the bonding state which has the lowest energy. Now we have to 

find the wave function of the intermediate state by doing the same steps. 

                                                                2 2 0E e                                                              (2.104) 

And for this energy we found. 

                                                                    1 3                                                                           (2.105) 

                                                                    2 4                                                                      (2.106) 

So the wave function will come as follows. 

                                                 2 1 2 1 2( 1 2 3 4 )                                                  (2.107) 

Because the atomic orbitals are of the same atom we assume.  

                                                                       1 2                                                                       (2.108) 

By this assumption the wave function is going to be as follows. 

                                                   2 1( 1 2 3 4 )                                                              (2.109)  

After using the equation (2.101) we have now a normalized wave function below.       

                                                  
2

1
( 1 2 3 4 )

2
                                                               (2.110) 

The equation (2.110) represents the wave function of the intermediate state and we still have to 

find the wave function of the antibonding state by the same way. 

                                                      3 3 0 3E e t                                                                       (2.111) 

Using also the matrix (2.97) we found the following ’s for this energy. 

                                                      1 2 3 4                                                                    (2.112) 

And after we normalized the wave function we have now the antibonding state wave function. 
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3

1
( 1 2 3 4 )

2
                                                            (2.113) 

If we want to translate all these equations into words we have to say the following. 

    The electron moves from one atom to another in order to lower its energy, and by doing that 

it is making a delocalized covalent bond between the four cations of the titanium. 

    The electron can take three energies which are the bonding state energy (the lower energy 

and the favorite), the anti-bonding state energy (the higher energy), and the intermediate energy. 

Each of which has a specific wave function. 

3.4 Effective mass 

    Now the motion of the electron between the 4 neighbors should be thought of as a plan wave. 

So a wave function as a plan wave is given by. 

                                                               

'

2

ikna

n

e




                                                                       (2.114) 

If we think about the equation (2.70) for a while we will figure out that one can write it as 

below. 

                                                0 , 1 , 1( )nm nm n m n mH e ct                                                      (2.115) 

    The first term of the right hand side of this equation says that no matter which cation the 

electron is sitting, the electron has the energy 0e , and the second piece allows the electron to 

hop one step to the left or one step to right while the c is a constant has to do with the hopping 

and the lattice constant.  

If we use this Hamiltonian and the wave function in the Schrödinger equation, we will get. 

                                        
' ' ' '( 1) ( 1)

0 ( )ikna ikna ik n a ik n aEe e e ct e e                                                   (2.116) 

By getting rid of some of exponential factors we can write the equation (2.116) in a simple way. 

                                                     
' '

0 ( )ika ikaE e ct e e                                                                    (2.117) 

Finally, we can write the equation of the energy in the following way. 

                                                      
'

0 2 cos( )E e ct ka                                                                       (2.118) 
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Now the time to find the constant; if  

                                                              
'cos( ) 1ka                                                                (2.119) 

So the energy is going to be the following. 

                                                             0 2E e ct                                                                 (2.120) 

Comparing the equation (2.120) with the equation (2.96), the constant will be equal to 
3

2
c   

So the equation (2.118) will be. 

                                                         
'

0 3 cos( )E e t ka                                                           (2.121) 

The fig. 2.9  is representing the plot of ( )E f k  . 
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Fig. 2.10 The energy vs wave vector plot of the electron. 
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 By expending the energy (equation (2.121)) near the zero we will get the equation (2.122). 

                                                   

' 2

0

( )
3 (1 )

2

ka
E e t                                                       (2.122) 

We can simplify it to be as below. 

                                                   '2 2

0

3
3

2
E e t ta k                                                         (2.123) 

    On one hand we have the energy of this electron and it looks quadratic in k with some 

constant and in the other hand we have the energy of the free electron which also quadratic in 

k as indicated in the equation below. 

                                                            

2 2

2

k
E c

m
                                                           (2.124) 

Comparing the two energies allows us to introduce the effective mass of our electron. And to 

realize the effective mass mathematically we have to compare the factors on each k.  

                                                                 
2

2
'

*2
a t

m
                                                          (2.125) 

So the effective mass will as follow. 

                                                                  2

2
*

'2
m

a t
                                                         (2.126) 

    The last equation indicates that the effective mass has nothing to do with the real physical 

mass of the electron, but it has to do with the hopping with greater hopping the mass gets 

smaller and for small hopping the mass gets bigger. 

Now we can write the energy of the studied electron in terms of the effective mass. 

                                                            

2 2

0 *
2

2

k
E e t

m
                                                     (2.127)  

    The plan wave motion of the electron is associated with the effective mass of the electron. 

Now in order to know the value of the effective mass, we have to know the value of the hopping 

first. 
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3.5 Conclusion  

    The electron existing in the titanium cations would change the whole concept of the F+ center 

if we plugged our bond model in it, which indicates that the electron we are talking about makes 

a delocalized covalent bond in the boundary of the F+ center between four neighbors of titanium 

cations and moves between them like a plan wave with an effective mass. By thinking about 

the numbers of the F+ centers in the crystal and each one gives a bond so that is what makes the 

Gibbs free energy smaller and makes the crystal more coherent so this interpretation may 

answer our previous questions whish say “why we need defects in the crystal to make it 

stable?!”. 
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General conclusion and perspectives  

    In this work, we saw that the perfect crystal does not exist in nature due to the environment 

and the mankind experiments. Scientists are always dealing with a real crystal, which is simply 

a perfect one plus defects. 

The purpose of this research was to study theoretically the role and importance of defects on 

some semiconductors properties. This manuscript contains two main parts:  

    In the first part of this project, we distinguished the defects types that can be found in all 

materials, by their localization and their dimensions. Due to the large applications of transparent 

conductive oxides (TCO) such as titanium dioxide (TiO2) which are singular materials that alloy 

two incompatible properties: an excellent optical transparency and a good electrical 

conductivity. Among a lot of TCO, TiO2 is useful, nontoxic, and abundant in nature. Oxygen 

vacancies are very important dimensionless defects (zero-point defect) in TiO2. They play a 

crucial role in the material by changing somehow its properties. On the other hand, oxygen 

vacancies are responsible for forming other defects which are the color centers (F+). 

    After the calculations done in the first part of the second chapter, the energy of the trapped 

electron in the oxygen vacancy (F+ center) has been changed due to the external electric field, 

while the second order correction of the energy in the perturbation theory allowed us to see the 

energy levels repulsion considered as a good result.  

    In its last part (second chapter), we focused on the electron existing and moving between the 

neighbors of Ti+4 cations surrounding the oxygen vacancy. After doing the math calculations, 

we clearly understood that the electron is moving from one cation to another, in a form of plan 

wave with an effective mass in order to lower its energy making a metallic bond which helps 

the material to get more stable.  

    The bond model is based on a lot of approximations. Allowing the electron to move randomly 

between the four cations may give us a better understanding of its wave function, its energy, 

and let us describe the F+ more precisely.  

    We also mention that the trapped electron at the oxygen vacancy site similar to the box of 

potential can be also disturbed by applying a variable exterior electric field or by light that 

contains magnetic and electric ones. In this case the stimulation depends on time and to solve 

the Schrödinger equation; it is really important and mandatory to use the time dependent 
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perturbation theory. This work has already started but it needs more time to be achieved because 

of the complexity of the system.   

    One of the most important future perspectives, to develop this work, is to study the defects 

using DFT calculations where their roles on electric properties and structure can be investigated, 

to get knowledge, that helps understanding them more.   

    At the end, we clearly clarify that this project gave us an opportunity to understand well the 

meaning of particle in box exists in a real crystal. This research strongly indicates the 

importance of the theory of perturbation plus bond model. We hope this work will be improved 

because the defects are assumed to be one of the most important topics in the field of material 

sciences.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

71 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


