

République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Tissemsilt

Département des Sciences de la technologie

Mémoire de fin d'études pour l'obtention du diplôme de Master académique en

Filière : Génie civil

Spécialité : structures

Présenté par : Ould-Rabah Athmane

Kenai Khadidja

Thème

Etude et dimensionnement d'un hangar en charpente métallique.

Soutenu le,

Devant le Jury :

Bouzid Haythem	President	M.C.B.	U-Tissemsilt
Bouzeriba Asma	Encadrante	M.C.B.	U-Tissemsilt
Bouderba Bachir	Examinateur	Prof	U-Tissemsilt

Année universitaire : 2020-2021

Remerciements

Tout d'abord, nous remercions ALLAH, le tout puissant de nous avoir donnés la force, le courage et la volonté de menerà bien ce modeste travail.

Nous tenons à remercier vivement et sincèrement notre encadrante le **Docteur : Bouzeriba Asma**, qui a contribué et assuré la direction

De ce travail, pour tout le soutien, les orientations et

La Patience qu'elle a manifesté durant son

Encadrement tout le long de la réalisation

De ce mémoire.

Nous souhaitons exprimer notre gratitude aux membres du jury,

Le professeur : BOUDERBA Bachir,

Et le Docteur : BOUZID Haythem

Sans oublier le Docteur : ABADA.G, le docteur : BENYAMINA.A, le Docteur SERBAH et le professeur BESSEGHIER A pour

L'intérêt qu'ils ont porté à notre travail en

Acceptant de l'enrichir

Par leurs propositions.

Nous tenons aussi à remercier vivement et sincèrement nos enseignants qui m'ont aidé et appris l'âme de la science

Durant ces années d'études.

Enfin, nosremerciements vont à toutes les personnes quiont, de près ou de loin, apporté aide Et encouragement.

Dédicace

Je dédie ce modeste travail à la personne la plus chère dans ma vie, et je lui souhaite un bon rétablissement

A ma très chère mère

A Mon père qui m'a protégé et aider tout au long de ma vie et m'a soutenu durant mes études. A toute ma famille

Pour leur rappeler de mon cœur et ma mémoire ne leur rappelle pas de ma note.

KENAI

Dédicace

Je dédie ce modeste travail :

À mes chers parents, ma famille et mes amis

Sans oublier mes professeurs et collègues

de la promotion 2020/2021

A/OULD-RABAH

RESUME

Dans ce travail, on a étudié et dimensionné un hangar de stockage en charpente métallique situé à Tissemsilt.

Cette étude a été élaborée en plusieurs étapes; en premier lieu l'évaluation des charges et surcharges ainsi que les effets des actions climatiques (neige et vent) selon le règlement Algérien « RNV 99 V2013», ensuite le dimensionnement des différents éléments (secondaires et porteurs), après l'étude sismique de l'ouvrage selon le règlement parasismique Algérien (RPA99/2003), puis l'étude des assemblages selon le « CCM 97 », et enfin l'étude de l'infrastructure selon le « BAEL 91», et comme logiciel nous avons utilisé le « ROBOT 2018 ». Le mémoire a été achevé par une conclusion.

Mots clés: Charpente métallique, actions climatiques, étude sismique, Assemblage.

ABSRACT

In this study, we studied and dimensioned a steel building for storage located in Tissemsilt.

This study is carried out in several stages, first the evaluation of loads and overloads as well as the effects of climatic actions (snow and wind) according to the Algerian regulations « RNV 99 V2013», then the sizing of the various elements (secondary and load-bearing), after the seismic study of the structure according to the Algerian regulations (RPA99/2003), then the study of the joint according to the « CCM 97 », and finally the study of the infrastructure according to the « BAEL 91», and as software we used the « ROBOT 2018 ». The memory was achieved by a conclusion.

Keywords: Steel building, climatic actions, seismic analysis, steel connections.

ملخص

هذا مشروع يعمد إلى دراسة تصميم و قياس مبنى للتخزين من الهياكل المعدنية ببلدية تيسمسيلت. حيث تمت دراسة هذا المشروع مرورا بعدة مراحل تتمثل أولاها في تقييم الأثقال بما فيها الزائدة فضلا على آثار المناخ (الثلوج والرياح) و هذا بموجب التنظيم الجزائري، « RNV 99 » نسخة 2013 ثم دراسة مقاييس عناصر المبنى الأساسية منها و الثانوية وفقا للقواعد الجزائرية للزلزال، « RPA 99 »نسخة 2003 و بعد ذلك حساب الوصلات و التجميعات وفقا للقواعد، « CCM 97 »و كخطوة نهائية تمت دراسة البنية التحتية وفقا لقواعد « ROBOT 2018 »و بالنسبة للبرامج اعتمدنا على « ROBOT 2018 »، العمل ينتهى مع استنتاجات.

الكلمات المفتاحية : الهياكل المعدنية ، آثار المناخ، دراسة الزلزال. الوصلات

SOMMAIRE

Introduction générale1
Chapitre I : Généralité
I.1.Présentation du projet2
1.1.1 Caractéristiques
géométriques2
l .1.2 Données du
site2
I.2.Conception de la structure
I.2.1: La toiture
I.2.2: La couverture4
I.2.4.Les pannes
I.2.5.Les contreventements
I.3 . Présentation schématique4
I.4. Caractéristique des matériaux5
.4.1.
Acier5
.4.2.
Béton6
I.5.Les assemblages
I.6.Règlements techniques7
<u> Chapitre П : Etude Climatique</u>
II.1. Introduction
II.2. Action du vent
II.3. Coefficients de calcul
II.3.1. Effet de la région9
II.3.2. Effet de site
II.3.3. Coefficient de topographie9
II.3.4.Calcul de coefficient dynamique9
II.4. calcule de la pression aérodynamique

II.4.1. Détermination de la pression dynamique pointe q _p (z _e):10
II.4.1.1Détermination du coefficient de la rugosité C _r 10
II.4.1.2Intensité de turbulence11
II.4.2.Détermination de coefficient de pression extérieure Cpe12
II.4.2.1Vent perpendiculaire à long pan V112
II.4.2.2 Vent perpendiculaire au pignon V216
II.4.3 Détermination de coefficient de pression intérieure C _{pi}
II.4.4 la pression aérodynamique W (z _e)20
II.5. Action de la neige
II.5.1Calcul des charges de neige
II.5.2.Charge de neige sur le sol
II.5.3.Coefficient de forme de la toiture
II.6.Conclusion
<u>Chapitre III:Dimensionnement des éléments porteurs de toiture et des façades</u>
III.1.Introduction
III.2.calcul des pannes
III.2.1.Panneaux couverture
III.2.2.Détermination de poids propre de la couverture
III.3 .Détermination des sollicitations26
III.3.1. Evaluation des charges et surcharges
III.3.2. les charges et surcharges appliquées

III.3.2.2. Les combinaisons d'actions
III.3.3.prédemensionnement des pannes
III.3.3.1. vérification la flèche à L'ELS
III.3.4.Condition de la Resistance(ELU)
III.3.4.1.Vérification à la flexion déviée
III.3.4.2.Vérification au cisaillement
III.3.4.3.Vérification au déversement
III.4.Calcul des liernes
III.4.1.Calcul de l'effort maximal revenant aux liernes
III.4.2.Dimensionnement des liernes
III.5.calcul de l'échantignole
III.6.Calcul des lisses de bardage
III .6.1 Panneaux bardage
III .6.1.1 Détermination de poids propre de bardage
III .6.1.2 .Détermination de la portée maximale pour le bardage
III .6.2.Données de calcul
III .6.3. Détermination des charges et surcharges
III.6.4. Condition de la résistance à la limite (ELU)
III. 8.2. Le pré dimensionnement du potelet42
III. 8.3.Vérification de la stabilité au flambement flexion sous N et M à L'ELU43

III. 83.1.calcul des élancements
III. 8.3.2.Calcul de l'élancement critique
III. 8.3.4.Calcul du coefficient de réduction44
III. 8.3.5.calcul de $\boldsymbol{\chi}_{min}$
III. 8.3.6.Calcul du facteur d'amplification45
III. 9.Vérification de la stabilité au déversement45
III. 9.1.Calcul de l'élancement réduit45
III.10.Conclusion

Chapitre IV: Action d'ensemble

.

IV.1. Introduction	.46
IV.2. Calcul des forces à l'aide des pressions de surfaces	.46
IV.2.1.Vent sur pignonV2	46
IV.2.2. Vent sur long panV1	48
IV.3.Détermination des moments renversants (M _R)	50
IV.3.1. Cas du vent	.50
IV.4.Conclusion	55

Chapitre V : Etude sismique

V.1.Introduction	
V.2.Méthode de calcul	56
V.3.La Méthode statique équivalent	56
V.4.Calcul de la force sismique totale	56

V.4.1.Coefficient d'accélération de zone A	56
V.4.2.Facteur d'amplification dynamique moyen D	56
V.4.3.La période fondamentale (T)	57
V.4.4.Coefficient de comportement R	58
V.4.5.Facteur de qualité Q	58
V.4.6.Détermination du poids total de la structure W	58
V.4.6.1.Calcul des charges permanente W _{Gi}	58
V.4.6.2.Calcul de la force sismique	59
V.4.6.3.Distribution des forces sismiques	59
V.5 .Conclusion	59

Chapitre VI : Etude de Contreventements et stabilité

VI.1.Introduction
VI.2.Contreventements de toiture (poutre au vent)60
VI.2.1 Evaluation des efforts horizontaux
VI.2.2 Effort de traction dans les diagonales61
VI.2.3Section de la diagonale
VI.2.4.Vérification à la résistance ultime de la section
VI.3. Vérification des pannes intermédiaires à la résistance
VI.3.1.Les charges revenant à la panne intermédiaire64
VI.3.2.Vérification de l'élément aux instabilités (déversement)65
VI.4 .Contreventement vertical du long pan70
VI .4.1.Dimensionnement de la pale de stabilité d'intermédiaire70
VI.4.1.1.Calcul de diagonale D270
VI.4.1.2.Section des diagonales70
VI.4.2. Vérification à la résistance ultime de la section

VI.5Conclusion	••••••	 		72
VI.5Conclusion	•••••	 •••••	•••••	72

Chapitre VII : Etude des portiques

VII.1. Introduction	73
VII.2. Charges permanentes	73
VII.3.Charges variables	73
VII4. Dimensionnement des portiques	73
VII .5. Modélisation de la structure sur Robot	
VII.6. Justification des poteaux	76
VII.7. Justification des traverses	77
VII.8. Conclusion	78

Chapitre VIII : Calcul des assemblages

VIII.1.Introduction
VIII.2. Assemblage traverse IPE 550 - traverse IPE 550
VIII.2.1 Détermination des efforts dans les boulons
VIII.2.2 Dimensionnement des boulons
VIII.2.3 Moment résistant effectif de l'assemblage
VIII.2.4 Résistance d'un boulon à l'intérieur cisaillement – traction
VIII.2.5 Vérification au poinçonnement
VIII.3. Détermination des efforts dans les boulons
VIII.4. Détail des assemblages par robot
VIII.5.Conclusion

Chapitre IX :Etude des fondations

IX.1. Introduction
IX.2. Choix du type de fondation
IX.3.Calcul des fondations
IX.3.1.Charges à considérer115
IX.3.2.Pré-dimensionnement
IX.4.Calcul de hauteur de la semelle sol
IX.5.Vérification de la stabilité
IX.6.Vérification de la contrainte
IX7.Ferraillage
IX.8. Condition de non fragilité
IX.9.Calcul l'espacement des cadres117
IX.10.Calcul des longrines
IX.10.1.Introduction
IX.10.2.Armature longitudinales en traction simple117
IX.10.3.Vérification de la condition de non fragilité118
IX.10.4.Armatures transversales
Conclusion générale
Références bibliographiques
Annexes

Liste des figures

Figure I.1:	Hangar industriel	2
Figure I.2:	Panneau sandwich	4
Figure I.3:	Vue en perspective de l'ossature	4
Figure I.4 :	Vue de long pan	5
Figure I.5 :	Elévation portique	5
Figure I.6 :	Diagramme contrainte-déformation de l'acier	6
Figure II.1 :	Direction de vent	8
Figure II.2:	Répartition des surfaces sur long panV1 (parois verticales)	13
Figure II.3:	Légende pour les parois verticales sens V1	14
Figure II.4:	Légende pour la toiture sens V1	14
Figure II.5:	Répartition des surfaces sur pignonV2 (parois verticales)	16
Figure II.6:	Légende pour les parois verticales sensV2	17
Figure II.7:	Répartition des surfaces sur toiture sens V2	18
Figure II.8:	Coefficient de pression intérieure applicable pour des ouvertures	
Figure II.9:	Coefficient de forme, toiture à multiples versants	19 23
Figure III.1:	Disposition de la panne	25
Figure III. 2:	Schéma statique des charges permanentes G sur les pannes	26
Figure III.3:	Schéma statique de la poutre équivalente	27
Figure III.4:	Schéma statique des Surcharges du vent sur les pannes	27
Figure III.5:	Schéma statique des Surcharges de la neige sur les pannes	28
Figure III.6:	Répartition des charges sur les pannes	29
Figure III.7:	Représentation de cisaillement de la panne	33
Figure III.8:	Représentation d'échantignole de la panne	36
Figure III.9:	Disposition de la lisse de bardage	38
Figure III.10:	Les efforts dans les lisses	41
Figure III.11:	Disposition des potelets	43
Figure VI.1:	Schéma statique de la poutre au vent	60

Figure VI.2:	Schéma statique de la poutre au vent avec les efforts	62
Figure VI.3:	Schéma de stabilité verticale	70
Figure VII.1 :	Modèle de la structure sur RSA	74
Figure VIII.1.:	Représentation de l'assemblage Traverse – Traverse	79
Figure VIII.2. :	Pieds de poteau encastré	82
Figure VIII.3 :	Vue des pieds de poteau encastré	83
Figure VIII.4 :	Dispositions des tiges d'ancrages	83
Figure VIX.1 :	Sollicitations de fondation	115
Figure VXI.2 :	Vue en face du ferraillage de la semelle	117
Figure VXI.3 :	Schéma du ferraillage des longrines	117

Liste des tableaux

Tableau II.1:	Valeur de qréf, Ce et la pression dynamique pointe qp(ze)	12
Tableau II.2:	Valeurs de surface et de coefficient Cpe de parois vertical	13
Tableau II.3:	Valeurs de surface et de coefficients de pression extérieurs des zones F, G et H	16
Tableau II.4:	Valeurs de surface et de coefficient Cpe de de parois vertical	17
Tableau II.5:	Valeurs de surface et de coefficient Cpe de toiture	19
Tableau II.6:	Valeurs de la pression aérodynamique des parois verticales selon V 1	21
Tableau II.8:	Valeurs de la pression aérodynamique des parois verticales selon V 2	22
Tableau II.9:	Valeurs de la pression aérodynamique de la toiture selon V ₂	22
Tableau III.1:	Le poids propre panneau correspondante à chaque épaisseur	26
Tableau III.2:	Caractéristique et dimensions d'IPE180	30
Tableau III.3:	Les combinaisons d'action les plus défavorable	31
Tableau III.4:	Détail de panneau sandwich (bardage)	37
Tableau III.5:	Le poids propre e panneau correspondante à chaque épaisseur	38
Tableau III.6:	Caractéristique et dimensiond'IPE330	43
Tableau IV.1:	Valeurs des forces extérieures de la paroi verticale sens V2	46
Tableau IV.2:	Valeurs des forces extérieures de la toiture sens V	47
Tableau IV.3:	Valeurs des forces intérieures de la paroi verticale sensV2	47
Tableau IV.4:	Valeurs des forces intérieures de la toiture sens V2	47
Tableau IV.5:	Valeurs des forces extérieures de la paroi verticale sens V1	48
Tableau IV.6:	Valeurs des forces extérieures de la toiture sens V1	49
Tableau IV.7:	Valeurs des forces intérieures de la paroi verticale sensV1	49
Tableau IV.8:	Valeurs des forces intérieures de la toiture sens V1	49
Tableau IV.9:	Valeurs des forces extérieurs horizontales et verticales sens V2	50
Tableau IV.10:	Valeurs des forces intérieure horizontales et verticales sens V2	51
Tableau IV.11:	Valeurs des forces Fw sens V2	52
Tableau IV.12:	Valeurs des forces extérieurs horizontales et verticales sens V1	53
Tableau IV.13:	Valeurs des forces intérieurs horizontales et verticales sens V1	54
Tableau IV.14:	Valeurs des forces F _w sens V1	54
Tableau VI.1:	Les valeurs de F _i	61
Tableau IX.1 :	Sollicitations les plus défavorables	115

LISTE DES NOTATIONS

$q_{r \acute{e} f}$	Pression dynamique moyen de référence
K _t	Le facteur de terrain
Z_0	Le paramètre de rugosité
Z _{min}	La hauteur minimale
3	Coefficient utilisé pour le calcul de Cd
Ct	Coefficient de topographie
Cd	Le coefficient dynamique
W	Pression aérodynamique
q_p	Pression dynamique de pointe
C _{pe}	Coefficient de pression extérieur
C _{pi}	Coefficient de pression extérieur
C _e	Le coefficient d'exposition au vent
Cr	Le coefficient de rugosité.
Iv	L'intensité de la turbulence.
UP	L'indice de perméabilité
S	Charge caractéristique de la neige
S _k	Charge de neige sur le sol
u	Coefficient d'ajustement des charges
G	Action permanente
Q	Action d'exploitation
Е	Module d'élasticité longitudinale de l'acier (E = 210 000 MPa)
Fy	la limite d'élasticité de l'acier (235N/mm ²)
f	La Flèche d'une poutre
А	Aire de la section.
Anet	Aire de la section nette.
d ₀	Diamètre du trou.
ф	Diamètre de boulon.
h	Hauteur de la section
b	Largeur de la section
$I_{y,z}$	Moment d'inertie
$i_{y,z}$	Rayon de giration d'une section.
$W_{ply.z}$	Module plastique de la section.
$W_{ely,z}$	Module élastique de la section.
M _{Sd}	Moment fléchissant sollicitant.
M _{Rd}	Moment résistant par unité de longueur dans la plaque d'assise.

M _{Pl}	Moment plastique.
M _{b,Rd}	Moment de la résistance au déversement.
N _{pl} ,Rd	Effort normal de la résistance plastique de la section transversale brute.
N _{b,Rd}	Effort normal d'un élément comprimé au
	fambement
N _{sd}	Effort normal sollicitant.
L	Longueur d'une pièce (Poutre, Poteau).
l_f	Longueur de flambement.
t_f	Epaisseur d'une semelle de poutre.
t_w	Épaisseur de l'âme de poutre.
Ψ	Coefficient de combinaison.
λ	Elancement.
λ_{LT}	Élancement de réduction vis-à-vis du déversement.
χ	Facteur de réduction vis-à-vis du flambement.
Xıt	Facteur de réduction vis-à-vis du déversement.
α	Facteur d'imperfection pour le flambement.
α_{lt}	Facteur d'imperfection pour le déversement.

Introduction générale

Le domaine de construction est un vaste domaine, qui a connu durant son histoire plusieurs rénovations non seulement dans les procédés de conception et de réalisation, mais aussi dans les techniques et les matériaux utilisés dans les structures, selon les besoins et les capacités. Ainsi on a désormais une variété de choix dans les matériaux, le béton armé, le béton précontraint, l'acier, le bois.

Actuellement en Algérie l'utilisation de la charpente métallique est utilisée dans divers domaines, les autres domaines se basent plus essentiellement sur le béton, malgré que les structures en acier présentent de nombreux avantages tel que la légèreté, le montage rapide sur chantier, les transformations ultérieures plus faciles et surtout un faible encombrement.

Dans le présent mémoire nous allons essayer d'appliquer toutes les connaissances acquises durant notre cursus sur un projet réel, un hangar en charpente métallique utilisant le règlement algérien (CCM97) intitulé « calcul des structures en acier ». L'objectif principal sera de comprendre et de compléter les informations déjà acquises dans le cours de charpente métallique, ensuite viendra le second but qui est de présenter un travail satisfaisant en vue d'obtenir le diplôme de Master académique en Génie-civil.

Dans ce contexte, notre travail sera divisé en neuf chapitres :

- 1. Généralités
- 2. Evaluation des charges climatique
- 3. Dimensionnement des éléments porteurs de toiture et des façades.
- 4. L'action d'ensemble
- 5. L'étude sismique
- 6. Etude de contreventements et stabilité
- 7. Etude des portiques
- 8. Calcul des assemblages
- 9. Etude des fondations

Chapitre I Généralités

I.1.Présentation du projet

Notre projet en main consiste à faire l'étude de l'ossature d'un hangar stockage en charpente métallique.

L'ouvrage est situé à la commune de Tissemsilt, Wilaya de « Tissemsilt », la structure est d'une surface de 1014,4m², 32.00m de largeur et 31.7m de longueur. Avec un espacement entre portiques de 6,34 m ce qui fait le total de six (06) portiques.

I .1.1.Caractéristiques géométriques

L'ouvrage est caractérisé par les dimensions suivantes :

- Façade perpendiculaire à la ligne de faîtage (pignon)......32,00m
- Hauteur totale de l'ouvrage :.....07,6m

Figure I.1 : Hangar industriel

I .1.2 Données du site

Le projet est un Hangar implanté dans un terrain plat à Wilaya de « tissemsilt » de contrainte admissible du sol est de = 2 bars

Zone de neige: Zone B

Zone du vent: Zone II

Zone sismique: Zone IIa

I.2.Conception de la structure

La structure est constituée de 6 portiques à 5 travées. Ces portiques assurent la stabilité transversale de l'ossature. La stabilité longitudinale est assurée par des palées de stabilités.

I.2.1.La toiture

Généralement pour les hangars industriels, le dégagement d'un espace à l'intérieure est une priorité pour le concepteur, ce qui nous conduit à l'utilisation d'une toiture en charpente métallique, qui nous offre plusieurs avantages, dont les plus importants sont:

• Les poteaux intérieurs sont éliminés, permettant un usage plus souple et plus efficace de l'espace construit.

• La légèreté de la toiture en charpente métallique par rapport à la dalle en béton armé ou plancher mixte.

• La facilité et rapidité de montage.

I.2.2.La couverture

La couverture sera réalisé par des panneaux sandwich, appelé aussi panneaux double peau monoblocs, ils sont constituées :

- De deux tôles de parement intérieur et extérieur.
- D'une âme en mousse isolante.
- De profils latéraux destinés à protéger l'isolant et réaliser des assemblages aisés.

Les panneaux sandwichs nous offrent plusieurs avantages on site :

- Le pare-vapeur
- L'isolation et l'étanchéité
- Une bonne capacité portante
- Une bonne capacité portante
- Un gain de temps appréciable au montage.

Mais, leurs points faibles est dans l'étanchéité des joints.

Figure I .2 : Panneau sandwich

I.2.3.Les poteaux

Les poteaux sont des profile métallique avec une section constante.

I.2.4.Les pannes

Les pannes sont des profils métalliques avec une section constante.

I.2.5.Les contreventements

Les pales de stabilité en (x) dans les deux sens, assurent la verticalité des poteaux et prennent les efforts dues au séisme et au vent en le transmettant aux fondations.

I.3. Présentation schématique

Figure I .3. Vue en perspective de l'ossature

Figure I .5. Elévation portique

I.4. Caractéristique des matériaux :

| .4.1.Acier

L'acier est un matériau ferreux qui se distingue à la fois du fer et de la fonte. C'est un alliage métallique dont l'élément chimique principal est le fer et dont l'autre élément essentiel est le carbone.

Propriétés mécanique de l'acier :

• Nuances d'acier pour la réalisation de cet ouvrage est : S235

Figure I.6. Diagramme contrainte-déformation de l'acier

- La limite élastique : $f_y = 235$ MPa
- La résistance à la traction : $f_y = 360$ MPa
- Module d'élasticité longitudinale : E = 210000 MPa
- Coefficient de Poisson v=0,3
- Module d'élasticité transversale G = E/2(1+v)=84000MPa

| .4.2.Béton

Le béton est un matériau de construction hétérogène, constitué artificiellement par un mélange intime de matériaux inertes appelés « granulats » (sable, graviers, pierres cassées, ...), du ciment et de l'eau et éventuellement d'adjuvants pour en modifier les propriétés.

Propriétés mécanique de béton

- Masse volumique du béton utilisé est de 2500 Kg/m³.
- Résistance à la compression : $f_{c_{28}}$ =25 MPa
- La résistance à la traction : $F_{t_{28}} = 0,06f_{c_{28}} + 0,6 = 2,1$ MPa

I .5 .Les assemblages:

Les principaux modes d'assemblages sont:

1. Le boulonnage

Le boulonnage est une méthode d'assemblage mécanique démontable, Les boulons servent à créer une liaison de continuité entre éléments ou à assurer la transmission intégrale des efforts d'une partie à l'autre d'une construction.

2. Le soudage

Le soudage est un procédé d'assemblage permanent. Il a pour objet d'assurer la continuité de la matière à assemble.

| .6.Règlements techniques:

Les règlements techniques utilisés sont les suivants :

- 1. Eurocode03 : Règles de Calcul des structures métalliques selon l'Eurocode 3.
- 2. RPA 99 version 2003 : Règlement parasismique Algérienne DTR-B.C.-2.48
- 3. RNV99 version 2013 : Règle définissant les efforts de la neige et du vent.

4. DTR B.C.2.2 : Document technique règlementaire des charges permanentes et charges d'exploitations.

5. DTR B.C.2.44 : Règles de conception et de calcul des structures en aciers (CCM97)

Chapitre II Etude Climatique

II.1. Introduction

Le vent a une direction d'ensemble, mais qu'il peut venir de n'importe quel côté. L'étude du vent est pour la détermination des différentes actions dues au vent dans toutes les directions possibles, Les calculs seront menés conformément au règlement neige et vent RNVA version 2013.

Les valeurs de pression du vent dépendent d'un certain nombre de facteurs :

- De la région.
- De site d'implantation
- De la hauteur de la construction.
- De la forme géométrique de la construction.
- De la rigidité de la construction.
- De perméabilité de ses parois.

II.2. Action du vent

Les actions du vent s'exerçant sur les parois et la toiture sont déterminées pour un vent perpendiculaire.

- au long pan V1.
- au pignon V2.

Figure II.1: direction de vent

II.3. Coefficients de calcul

II.3.1. Effet de la région :

La structure est située dans la zone II. La pression de référence est donnée par le tableau 2-2 du RNVA version 2013 par $q_{réf} = 435 \text{ N/m}^2$

II.3.2. Effet de site :

La structure sera implantée en zone urbains, donc d'après les donnes de tableau 2-4dans le RNVA version 2013, la catégorie de terrain est IV

D'où :

-Le facteur de terrain KT = 0,234

-Le paramètre de rugosité Z₀ = 1m
-La hauteur minimale Z min = 10m.
-coefficient utilisé pour le calcul de Cd, ε=0,67

II.3.3. Coefficient de topographie :

Le coefficient de topographies $C_t(z)$ prend en compte l'accroissement de la vitesse du vent lorsque celui-ci souffle sur des obstacles que les collines, les dénivellations isolées etc. Le site d'implantation de notre structure est plat, donc le coefficient de topographies

Ct =1.

II.3.4.Calcul de coefficient dynamique :

Le coefficient dynamique C_d concerne de la hauteur et la largeur de la structure, également les matériaux de la structure.

Notre structure est un bâtiment métallique dont la hauteur est inferieur à 15m ce

qui donne Cd=1 (Chapitre III : coefficient dynamique dans RNVA version 2013).

II.4 calcule de la pression aérodynamique

La pression aérodynamique $W(Z_i)$ sont calculées parla formule suivant:

W (Z_e) = $q_p(Z_e)$ [$C_{pe} - C_{pi}$].

Avec:

 $q_p(\mathbf{z}_e)$: la pression dynamique pointe.

C_{pe}: coefficient de pression extérieure.

C_{pi}: coefficient de pression intérieure.

2020-2021

II.4.1. Détermination de la pression dynamique pointe $q_p(z_e)$:

 $q_p(z_e) = q_{ref} \times C_e(z_e) [N/m^2]$

 \mathbf{q}_{ref} : La pression dynamique de référence pour les constructions permanentes, est donnée par :

On a: $q_{réf} = 435 N / m^2$

Ze : représente la hauteur de référence.

• Pour les parois verticales, la hauteur des parois h=6m, et la largeur b= $32m \rightarrow h \le b$ et Ze=6m (la figure 2.1 du RNVA version 2013.Chapitre 2).

• Pour les toitures, Ze est pris égal à la hauteur maximale des bâtiments : Ze=7.6m

Ce(z): Le coefficient d'exposition au vent tenant compte la turbulente du vent :

 $C_{e}(z)=Ct^{2}(z)\times Cr^{2}(z)\times [1+7xIv(z)]$

C_e: le coefficient d'exposition au vent,

Cr : coefficient de rugosité.

Ct: coefficient de topographie.

 $I_V(z)$: l'intensité de la turbulence.

Z : est la hauteur considérée.

II.4.1.1Détermination du coefficient de la rugosité Cr

Le coefficient de rugosité traduit l'influence de la rugosité et de la hauteur sur vitesse moyenne du vent, est donne par : (2.3 chapitre 2 RNVA version 2013)

$$\mathbf{Cr} = \mathrm{kt} * \ln\left(\frac{\mathrm{zmin}}{\mathrm{z}_0}\right) \quad \mathrm{pour} \ \mathrm{z} < \mathrm{z_{min}}$$
$$\mathbf{Cr} = \mathrm{kt} * \ln\left(\frac{\mathrm{z}}{\mathrm{z}_0}\right) \quad \mathrm{pour} \ \mathrm{z_{min}} \le \mathrm{z} \le 200\mathrm{m}$$

Z₀ : paramètre de rugosité.

 Z_{min} : hauteur minimal.

 K_t : facteur de terrain.

Z : hauteur considérée.

Tel que : Z₀= 1m

$$\mathbf{Z}_{\min} = 10m$$
$$\mathbf{K}_{\mathbf{T}} = 0.234$$

✓ pour la paroi verticale :

 $\mathbf{Z} = \mathbf{6m}$ $\mathbf{Z} = \mathbf{6m} < \mathbf{Z}_{\min} = 10m$

Donc : $C_r(Z=6m) = K_T x \ln(\frac{zmin}{z_0}) = 0.234 * \ln(\frac{10}{1}) = 0.538$

$$\longrightarrow$$
 Cr (z)= 0.538

2020-2021

✓ pour la toiture : Z = 7.6 $\Box = 7.6 < Z_{min} = 10m$

Donc : $C_r(Z=7.6m) = K_T * \ln(\frac{zmin}{z_0}) = 0.234 * \ln(\frac{10}{1}) = 0.538$ **Cr** (z)= **0.538**

II.4.1.2Intensité de turbulence :

L'intensité de la turbulence est définie comme étant l'écart type de la turbulence divisé par la vitesse moyenne du vent, donnée par l'équation 2.5

$$\mathbf{I}_{\mathbf{v}}(z) = \frac{1}{C_{\mathbf{t}}(z) * \ln(\frac{z}{z_0})} \qquad \text{pour } Z > Z_{\text{min}}$$

$$\mathbf{I}_{\mathbf{v}}(z) = \frac{1}{C_{t}(z)*\ln(\frac{zmin}{z0})} \qquad \text{pour } Z \leq Z_{min}$$

✓ pour la paroi verticale :
Z=6 ≤
$$Z_{min}$$
 =10
Donc : $I_v(6) = \frac{1}{1*\ln(10/1)} = 0.432$
↓ pour la toiture
Z=7.6 ≤ Z_{min} =10
Donc : $I_v(7.6) = \frac{1}{1*\ln(10/1)} = 0.432$
 $I_V(7.6) = 0.432$
Donc le coefficient d'exposition Ce(z)

Γ c) est donné comme suit :

✓ pour la paroi verticale :

 $C_{e}(6) = (1)^{2} * (0.538)^{2} * [1+7x(0.432)] = 1,16$

 $C_e(6) = 1,16$

✓ pour la toiture :

 $C_e(7.6) = (1)^2 * (0.538)^2 * [1+7*(0.432)] = 1,16$

$C_e(7.6) = 1,16$

Le tableau II1 récapitule les résultats de la pression dynamique pointe $q_p(z_e)$

 q_p (ze) = q_{réf}× Ce (ze) [N/m²]

	qréf [N/ m^2]	Ce	$q_p [N/m^2]$
Toiture	435	1,16	504,6
Parois verticales	435	1,16	504,6

Tableau II.1 : valeur de qréf ,Ce et la pression dynamique pointe qp(ze) .

II.4.2.Détermination de coefficient de pression extérieure Cpe :

Les coefficients de pression extérieure Cpe des constructions à la base dépend des dimensions de la surfaces chargée, ils sont définit pour des surfaces chargées de $1m^2$ et $10m^2$ (Cpe.1 ; Cpe.10)

$$C_{pe} = C_{pe1} \qquad Si \quad S \le 1m^2$$

$$C_{pe} = C_{pe1} + (C_{pe1} - C_{pe10}) \times \log_{10}(s) \quad Si \qquad 1m^2 < S < 10m^2$$

$$C_{pe} = C_{pe10} \quad Si \qquad S \ge 10m^2$$

II.4.2.1Vent perpendiculaire à long pan V1 :

pour les parois verticales:

On a: b= 31,7m ; d= 32.00m ; h= 7.6m

- e = min [b; 2h] = min [31,7m; 2(7.6)] = min [31,7; 15.2]
- e = 15.2 m.

On a: d=32m>e = 15.2m. Donc on prend le 1er cas de légende (paragraphe 5.1.2. de RNV2013).

Figure II.2: Répartition des surfaces sur long pan V1 (parois verticales).

Les coefficients de pression extérieurs C_{pe} dans chaque zone sont regroupés dans le tableau suivant :

es surfaces des zones $\geq 10m2$, Donc : $C_{pe} = C_{pe10}$

Zone	А	В	С	D	Е
Surface m ²)	18.24	72.96	100.8	190.2	190.2
C _{pe}	-1	-0.8	-0.5	0.8	-0.3

Tableau II.2 : Valeur de surface et de coefficient C_{pe} de parois verticales

Figure II.3: Légende pour les parois verticales sens v1

✓ Pour la toiture :

On a: b= 31.7m; d= 32.00m; h= 7.6m; e = 15.2; α = 11.30°.

Notre hangar ayant une toiture à multiple versants, pour un vent dont la direction est perpendiculaire aux génératrices, on prendra les valeurs de C_{pe} des toitures à deux versants avec θ =0 modifiée pour leur position selon la figure 5.7.a de RNV 2013.

Figure II.4: Légende pour la toiture sens V1.

Les coefficients de pression extérieurs des zones F, G et H de premier versant sont évalués comme suit :

Zone F : surface =
$$\frac{3,8*1,52}{\cos 11,30} = 5,89m^2$$
 \longrightarrow $1m^2 < 5,98 < 10m^2$
donc : $C_{pe} = C_{pe1} + (C_{pe10} - C_{pe1}) \log_{10}(s)$
 $\begin{cases} \alpha = 5^\circ \rightarrow C_{pe10} = -1,7 \\ \alpha = 15^\circ \rightarrow C_{pe10} = -0,9 \end{cases}$
 $\begin{cases} \alpha = 5^\circ \rightarrow C_{pe1} = -2,5 \\ \alpha = 15^\circ \rightarrow C_{pe1} = -2 \end{cases}$

Pour $\alpha = 11,30$ on interpole entre les deux valeurs $\alpha = 5^{\circ} et \alpha = 15^{\circ}$ selon la formule :

$$f(x) = f(x_0) + \frac{f(x) - f(x_0)}{x - x_0} (x - x_0)$$

$$C_{pe10} = -1.7 + \frac{-0.9 + 1.7}{15 - 5} (11.3 - 5) = -1.196$$

$$C_{pe1} = -2.5 + \frac{-2 + 2.5}{15 - 5} (11.30 - 5) = -2.18$$

$$C_{pe} = -2.18 + (-1.196 + 2.18) \log_{10}(5.89) = -1.42$$

 $C_{pe} = -1,42$

Zone G : surface = $\frac{24,1*1,52}{\cos 11,30} = 37,35m^2 > 10m^2$ $C_{pe} = C_{pe10} - 1,2 + \frac{-0,8+1,2}{15-5}(11,3-5) = -0,94$ $C_{pe} = -0,94$ Zone H : surface = $\frac{31,7*6,48}{\cos 11,30} = 209,47m^2 > 10m^2$ $C_{pe} = C_{pe10} = -0,6 + \frac{-0,3+0,6}{15-5}(11,3-5) = -0,41$ $C_{pe} = -0,41$

Le tableau II.3 regroupe ces résultats :

Zone F		G	Н
Surface (m ²)	5,89	37,35	209,47
C _{pe}	-1,42	-0,94	-0,41

Tableau II.3 : Valeurs de surface et de coefficients de pression extérieurs des zones F,G et H

II.4.2.2 Vent perpendiculaire au pignon V2 :

✓ pour les parois verticales:

On a : **b**= 32m ; **d** = 31,7m. **h**= 7.6m

 $e = \min [b; 2h] = \min [32; 2(7.6)] = \min [32; 15.2]$

On a : d=31,7m > e = 15.2 m. Donc on prend 1^{er} cas de légende (article 5.1.2 de RNVA version 2013).

Figure II.5: Répartition des surfaces sur pignon V2 parois verticales).

Les résultats de coefficients de pression extérieure C_{pe} dans chaque zone sont donnés dans le tableau suivant :

Pour	toutes les surfaces	$S \ge 10m^2$, Donc :	$C_{pe1} = C_{pe10}$
------	---------------------	------------------------	----------------------

Zone	А	В	С	D	Е
Surface (m ²)	18.24	72.96	99	192	192
C _{pe}	-1	-0.8	-0.5	0.8	-0.3

Tableau II.4: Valeur de surface et de coefficient Cpe de parois verticale.

Figure II.6: Légende pour les parois verticales sens V2.

✓ Pour la toiture :

On a : **b**= 32m ; **d**= 31,7m ; **h**= 7.6m ; **e**= 15.2 ; α = 11.30°.

Pour un vent dont la direction est parallèle aux génératrices, les coefficients de pression s'obtiennent en utilisant les valeurs des toitures à un versant pour $\theta=90^{\circ}$.

Les coefficients de pression des zone Finf, Fsup,G, H et I sont calculés de la manière suivantes :

Zone F_{inf}: surface =
$$\frac{1,52*3,8}{\cos 11,30}$$
 = 5,89m² \longrightarrow 1m<5,89<10m²
 C_{pe} = -2,07+(-1,41+2,07)log₁₀(5,89)=-1,56
 C_{pe} = -1,56
Zone F_{sup}: surface = $\frac{1,52*3,8}{\cos 11,30}$ = 5,89m² \longrightarrow 1m<5,89<10m²
 C_{pe} = -2,07+(-1,41+2,07)log₁₀(5,89)=-1,56
 C_{pe} = -1,56

2020-2021
32m

Zone G: surface = $\frac{1,52 \times 24,4}{\cos 11.30}$ = 37,82m²>10m² cpe10=-1,2+ $\frac{-0,8+1,7}{15-5}(11,8-5) = -1,3$ $C_{pe} = -1,3$ Zone H: surface = $\frac{6,08 * 32}{\cos 11.30}$ = 198,40m²>10m² $C_{pe} = C_{pe10} = -0.7 + \frac{-0.6 + 0.7}{15 - 5} (11.8 - 5) = -0.63$ $C_{pe} = -0,63$ Zone I : surface = $\frac{24,1*32}{\cos 11,30}$ = 786,44 m²>10m² $C_{pe} = C_{pe10} = -0.6 + \frac{-0.5 + 0.6}{15 - 5}(11.8 - 5) = -0.53$ *C_{pe}*=-0,53 1.52m 6.08m 24,1m e/4 =3.8m F sup 24.4m G Н Vent

Zone	Fsup	Finf	G	Н	Ι
Surface (m ²)	5.89	5.89	37,82	198.40	786.44
C _{pe}	-1,56	-1,56	-1,3	-0,63	-0,53

Tableau II.5 : Valeur de surface et de coefficient Cpe de toiture

II.4.3 Détermination de coefficient de pression intérieure Cpi

Pour les bâtiments sans face dominant, le coefficient de pression intérieure C_{pi} est déterminé à partir de la (figure 5.14 du RNVAversion2013), Le coefficient de pression C_{pi} est en fonction de l'indice de perméabilité μ_p et rapport h/d avec h est la hauteur et d sa profondeur.

 $\mu_p = rac{\Sigma \, \mathrm{des} \, \mathrm{surfaces} \, \mathrm{des} \, \mathrm{ouvertueres} \, \mathrm{Cpe} \leq 0}{\Sigma \, \mathrm{des} \, \mathrm{surfaces} \, \mathrm{de} \, \mathrm{toutes} \, \mathrm{les} \, \mathrm{ouvertures}}$

 μ_P :Indice de permeabilité

• Cas de vent perpendiculaire au long pan (V1) :

L'hangar est contient de :

- ✓ 15 fenêtres de dimension (0.8*1.40) m² dans long pan 01
- ✓ 15 fenêtres de dimension (0.8*1.40) m² dans long pan 02
- ✓ 6 fenêtres de dimension (0.8*1.40) m² dans pignon01
- ✓ 1 porte de dimension (6.15*4.45) m² dans pignon01
- ✓ 6 fenêtres de dimension (0.8*1.40) m² dans pignon02

$$\mu_p = \frac{\sum \text{des surfaces des ouvertueres Cpe} \le 0}{\sum \text{des surfaces de toutes les ouvertures}}$$
$$\mu_p = \frac{16.8 + 6.72 + 27.367 + 6.72}{16.8 + 16.8 + 6.72 + 27.367 + 6.72} = \frac{57.607}{74.407}$$

$$\implies \mu_{P}=0.77$$

On a: h = 7.6m et d = 32.00m

- Le rapport h/d= 7.6/32 = 0.23 < 0.25, donc à partir la figure (5.14 du RNVA version 2013) $\Box > C_{pi} = -0.18$
 - Cas de vent perpendiculaire au pignon (V2) :

$$\mu_p = \frac{\sum \text{des surfaces des ouvertueres Cpe \le 0}}{\sum \text{des surfaces de toutes les ouvertures}}$$

$$= \frac{16.8 + 16.8 + 6.72}{16.8 + 16.8 + 6.72 + 27.367 + 6.72} = \frac{40.32}{74.407}$$

$\implies \mu_p = 0.54$

On a: h = 7.6m et d = 31,7m

Le rapport h/d= 7.6/31,7= 0.23<0,25, donc à partir la figure (5.14 du RNVA version2013)

$$\implies C_{pi} = 0.09$$

II.4.4 La pression aérodynamique W (ze) :

1. Cas de vent perpendiculaire au long pan (V1)

✓ Paroi vertical:

 $q_p(z_e) = 504,6N/m^2$ $C_{pi} = -0.18$

Zone	$q_p N/m^2$	C_{pe}	C_{pi}	W(Ze)N/m ²
Α	504,6	-1	-0.18	-413,77
В	504,6	-0.8	-0.18	-312,85
С	504,6	-0.5	-0.18	-161,47
D	504,6	0.8	-0.18	494,50
E	504,6	-0.3	-0.18	-60,55

Tableau II.6 Valeurs de la pression aérodynamique des parois verticales selon V_1

✓ toiture:

$$q_p(z_e) = 504,6N/m^2$$
 $C_{pi} = 0.18$

Zone	$q_p N/m^2$	Сре	Срі	W(Ze)N/m ²
F	504,6	-1.42	-0.18	-625,70
G	504,6	-0.94	-0.18	-383.49
Н	504,6	-0.41	-0.18	-116,05
J	504,6	-1	-0.18	-413,77
Ι	504,6	-06	-0.18	-211,93

Tableau II.7. Valeurs de la pression aérodynamique de toiture selon V_1

2. Cas de vent perpendiculaire au pignon (V_2)

✓ -Paroi vertical:

 $q_p(z_e) = 504,6N/m^2$ $C_{pi} = 0.09$

Zone	$q_p N/m^2$	C_{pe}	C_{pi}	W(Ze)N/m ²
Α	504,6	-1	0.09	550,01
В	504,6	-0.8	0.09	-449,09
С	504,6	-0.5	0.09	-297,71
D	504,6	0.8	0.09	358,26
Е	504,6	-0.3	0.09	-196,79

Tableau II.8. Valeurs de la pression aérodynamique des parois vertical selonV2

✓ -Toiture:

$$q_p(z_e) = 504,6N/m^2$$
 $C_{pi} = 0,09$

Zone	$q_p N/m^2$	C_{pe}	C_{pi}	W(Ze)N/m ²
Fsup	504,6	-1,56	0,09	-832,59
Finf	504,6	-1,56	0,09	-832,59
G	504,6	-1,3	0,09	-701,39
Н	504,6	-0,63	0,09	-363,31
Ι	504,6	-0.53	0,09	-312,85

Tableau II.9. Valeurs de la pression aérodynamique de la toiture selonV2

II.5. Action de la neige

II.5.1Calcul des charges de neige :

La charge caractéristique de neige **S** par unité de surface en projection horizontale de toiture ou de toute autre surface s'obtient par la formule :

$$S = \mu^* S_k \qquad (KN/m^2)$$

Avec:

Sk: charge de neige sur le sol, elle est en fonction de l'altitude et de la zone de neige.

 μ : coefficient d'ajustement des charges, il est en fonction de la forme de la toiture.

II.5.2.Charge de neige sur le sol :

Le projet est à wilaya de Tissemsilt, qui est classée en zone B selon la classification de RNVA version 2013.

L'altitude du projet est environ 900 m, donc S_k est donnée para la formule suivante:

$$\mathbf{S}_{\mathbf{k}} = \frac{0.04 * \mathrm{H} + 10}{100} = \frac{0.04 * 900 + 10}{100} = 0.46$$

 $S_{k=}$ 0.46 KN/m²

II.5.3.Coefficient de forme de la toiture :

Les valeurs μ de forme des toitures à versants multiples sont données par le tableau (3) en fonction de l'angle α [6.2.3 du RNVA version2013].

Figure II.9 : Coefficient de forme, toiture à multiples versants

On a α =11.30° Donc : $0^{\circ} \le \alpha \le 30^{\circ}$ à partir de tableau on a : [RNVA version 2013, tableau 3] $u_1 = 0.8$ $u_2 = 0.8 + 0.8^*(\alpha/30) = 0.8 + 0.8^*(11.30/30)$ $u_2 = 1.10$ Les dispositions de charge à considérer sont :

Cas (i) : sans accumulation de neige

Cas (ii) : avec accumulation de neige [RNVA version2013, Figure 9]

Donc la charge de la neige sur la toiture est :

Pour le cas (i) : $\alpha_1 = \alpha_2$

 $S = \mu_{1} (\alpha_{1})^{*} S_{k} \implies S = 0.8 *0.46$ $S = 0.36 \text{ KN/m}^{2}$ Pour le cas (ii) : $\alpha_{1} = \alpha_{2}$ $S = \mu_{1} (\alpha_{1})^{*} S_{k} \implies S = 0.8^{*} 0.46$ $S = 0.36 \text{ KN/m}^{2}$ et: $S = u_{2} (\alpha_{1})^{*} S_{K} \implies S = 1.10^{*} 0.46$

 $S = 0.50 \text{KN/m}^2$

II.6.Conclusion

Dans ce chapitre, nous avons déterminé les efforts se rapportant à la neige et au vent. Les résultats trouvés seront utilisées dans les prochains chapitres pour le dimensionnements des éléments de la structure (panne, poteau,...).

Chapitre III Dimensionnement des éléments porteurs de toiture et des façades

III.1.INTRODUCTION

Dans ce chapitre, nous avons calculé les éléments porteurs (les pannes, les lisses de bardage) qui constituent le hangar et qui soumise aux différents chargements.

III.2.calcul des pannes

Les pannes sont des éléments qui ont pour fonction de supporter la couverture, elles sont destinées à transmettre les charges et sur charges s'appliquant sur la couverture à la traverse ou bien à la ferme, sont disposées parallèlement à la ligne de faîtage, dans les plans des versants. Elles sont calculées en flexion déviée, sous l'effet des charges permanentes et d'exploitation et des charges climatiques.

Figure III.1: disposition de la panne

On étudie la panne la plus sollicitée, qui est la panne intermédiaire de portée L=6,34m, incliné d'un angle $\alpha = 11.30^{\circ}$ et dans l'entraxe « e » égale à 1,36m.

III.2.1.Panneaux couverture

Pour choisir le panneau couverture, on doit savoir la charge du vent maximale sollicité la toiture, et le nombre d'appuis de sur lesquels le panneau de couverture sera appuyé ainsi que l'épaisseur de la couverture.

Dans notre cas, la charge maximale du vent est égale à $W=-832,59N/m^2 = -83,259daN/m^2$

III.2.2. Détermination de poids propre de la couverture

D'après ce tableau ci-dessous on fait choisir un panneau de couverture de 40mm d'épaisseur ce qui donne un poids de **12.9kg/m2.**

		Epaisseurs nominales de l'âme (mm)								
CARACI	ERIS ILQUES DO PANNEAU	3.0	40	50	60	80	100	120		
	Epaisseur parement extérieur (mm)	0,50 - 0,63 - 0,75								
	Epaisseur parement intérieur (mm)	0,50 - 0,63								
	Largeur utile	1000 mm								
DIMENSIONNELLES	Largeur hors tout	1080 mm								
	Longueur maximale hors tout			1	6000 mi	n				
	Débord en extrémité	50 -100 - 150 - 200 - 300 mm								
PONDERALES (kg/m ²)	Ex. en épaisseurs 0,63 et 0,63 mm	12,5	12,9	13,3	13,7	14,5	15,3	16,1		

Tableau III.1. le poids propre e panneau correspondante à chaque épaisseur.

Les données:

- Poids propre de la couverture (panneaux sandwichs)......12.9Kg/m².
- Poids propre d'accessoire d'attache......05Kg/m².
- Poids propre de la panne estimé (IPE120)..... 10,4Kg/m.
- Espacement entre chaque panne: e=1.36m
- Chaque panne repose sur 2 appuis de distance: L=6.34m
- La pente de versant est : $\alpha = 11.30^{\circ}$
- Les pannes sont en acier **S235**
- Le module d'élasticité de l'acier est: **E=21000daN/mm²**
- la limite d'élasticité de l'acier : $f_y = 235 N/mm^2$

III.3.Détermination des sollicitations

III.3.1. Evaluation des charges et surcharges

a)-Les charges permanentes (G)

Figure III.2. Schéma statique des charges permanentes G sur les pannes

G = (Pcouverture + Paccessoire) * e + Ppanne = (12,9+5)* 1.36 +10,4 =34,74 kg/m G =34,74 daN/m b)-Surcharges d'entretien (p) :

Dans le cas des toitures inaccessible on considéré uniquement dans les calculs une charge d'entretien, qui est équivalente deux charges concentrées de 100Kg chacune située à 1/3 et 2/3 de la portée de la panne. (D'après le DTR BC 2.2)

Figure III.3:Schéma statique de la poutre équivalente

Pour calcul des moments :

M max $=\frac{p/l}{3} = \frac{100 * 6.34}{3} = 211.33$

Mmax=211.33Kg.m

La charge uniformément répartie (P) due à la surcharge d'entretien est obtenue en égalisant les deux moments max due à P aux charges ponctuelles (**Peq**).

$$\mathbf{M}_{\max} = \frac{p'l}{3} = \frac{pl2}{8}$$

 $P_{eq}=8*p'/3*l = \frac{8*100}{3*6.34} = 42.06 \text{ Kg/ml}$

Peq =42.06daN/m

c)-Surcharges climatiques :

Surcharge du vent (V) :

La panne la plus sollicitée est celle exposée au vent c'est :(Zone F) tel que la charge considérée est : $W = -832,59N/m^2 = -83,259daN/m^2$.

[Chapitre II, tableau II.9]

 $\mathbf{V} = \mathbf{w}^* \mathbf{e}$

= -83,259*1.36 = -113,23 **daN/m**

V = -113,23 daN/m

Figure III.4:Schéma statique des Surcharges du vent sur les pannes.

Surcharge du la neige :

La charge de la neige maximale est $S = 0.50 \text{KN/m}^2 = 50 \text{daN/m}^2$.

 $N = s^*e$

= 50*1.36 = 68daN/m

N=68 daN/m

Figure III.5:Schéma statique des Surcharges de la neige sur les pannes

III.3.2 : Les charges et surcharges appliquées :

G = 34,74 daN/m.

 $P_{eq} = 42,06 \text{ daN/m}.$

V = -113,23 daN/m.

 $\mathbf{N} = 68 \text{ daN/m}.$

III.3.2.1.Décomposition des charges :

Suivant l'axe Z-Z :

 $Gzz = G \cos \alpha = 34,74 \cos 11.30 = 34,06 da N/m.$

Vzz = V = -113,23 daN/m.

 $Nzz = Ncos\alpha = 68cos11.30 = 66.68 daN/m$

 $Pzz = P_{eq} \cos \alpha = 42.06 \cos 11.30 = 41.24 da N/m.$

Suivant l'axe Y-Y :

Gyy = G sin α = 34,74sin11.30 = 6.80 daN/m.

Vyy = 0 daN/m.

Nyy = Nsin α =68sin 11.30 =13.32 daN/m.

 $Pyy = P_{eq}sin \alpha = 42.06sin11.30 = 8.24 \text{ daN/m}.$

III.3.2.2. Les combinaisons d'actions :

1) ELU

Suivant l'axe z-z

$$\begin{split} q_{z,sd1} = & 1.35G_{zz} + 1.5p_{zz} = 107.84 \text{ daN/m} \\ q_{z,sd2} = & 1.35G_{zz} + 1.5N_{zz} = & 146.001 \text{ daN/m} \\ q_{z,sd3} = & G_{zz} + & 1.5 \text{ V}_{zz} = & -& 135,78\text{ daN/m} \\ q_{z,sd} = & max \; (q_{z,sd1},\;q_{z,sd2}\;,\;q_{z,sd3}) = & \textbf{146,001 daN/m}. \end{split}$$

Suivant l'axe y-y

 $\begin{array}{l} q_{y,sd1} = 1.35 \ G_{yy} + 1.5 \ p_{yy} = 21.54 \mbox{daN/m} \\ q_{y,sd2} = 1.35 \ G_{yy} + 1.5 \ N_{yy} = 29,16 \ \mbox{daN/m} \\ q_{y,sd3} = 1.35 \ G_{yy} = 9,18 \ \mbox{daN/m} \\ q_{y,sd} = max \ (q_{y,sd1}, \ q_{y,sd2} \ , \ q_{y,sd3}) = 29,16 \ \mbox{daN/m} \end{array}$

2) ELS

Suivant l'axe z-z : $q_{z,sd1} = Gzz + pzz = 75.3 daN/m$ $q_{z,sd2} = Gzz + Vzz = -79,17 daN/m$ $q_{z,sd3} = Gzz + Nzz = 100,74 daN/m$ $q_{z,sd} = max(q_{z,sd1}, q_{z,sd2}, q_{z,sd3}) = 100,74 daN/m$

Suivant l'axe y-y:

 $q_{y,sd1}$ =Gyy+pyy =15,04 daN/m

 $q_{y,sd2} = Gyy + Nyy = 20,12 \text{daN/m}$

 $q_{y,sd} = max(q_{y,sd1}, q_{y,sd2}) = 20,12 daN/m$

-Les combinaisons les plus défavorables à retenir :

	H	E.L.U					
Charge	Flexion déviée	Déversement					
$q_{z,sd}$ (daN/m)	146,001	-135,78	100,74				
$q_{y,sd}$ (daN/m)	29,16	9,18	20,12				

III.3.3 : pré-dimensionnement des pannes:

La poutre est posée sur 02 appuis et une charge uniformément répartie ($\mathbf{f} \leq \mathbf{f}_{adm}$)

Figure III.6: Répartition des charges sur les pannes.

III.3.3.1 : vérification la flèche à L'ELS

Suivant Z-Z :

$$\mathbf{fz} = \frac{5qz * l^4}{384Ely} < \mathbf{f_{adm}} = \frac{L}{200} = \frac{634}{200} = 3,17\text{cm}$$
$$\mathbf{I_y} \ge \frac{5qz * l^4}{3.17 * 384 * E} = \frac{5 * (100,74 * 10) * (6,34)^4}{3.17 * 384 * 21} = 318,36\text{cm4}$$

 $I_v = \frac{10}{200} \approx m^4$

Donc l'IPE qui correspond est l'IPE180

Ses caractéristiques sont :

H	В	G	Iy	Iz	Wply	W _{plz}	A _{vy}	A _{vz}	iy	iz	tw	t_{f}
mm	mm	mm	cm ⁴	cm ⁴	cm ³	cm ³	cm ²	cm ²	cm	cm	mm	mm
180	91	18,8	1317,	100,81	166,4	34,6	15,3	11,3	7,42	2,05	5,3	8

Tableau III.2: Caractéristique et dimensions d'IPE180

Poids propre réel :

 $G = (P_{couverture} + P_{accessoire}) * e + P_{panne}$

= (18,8+5)* 1.36 +18,8 =51,16 kg/m

G =51,16 daN/m

Décomposition des charges :

 $Gzz=G.cos \alpha = 51,16cos11.30 = 50,16daN/m.$

Gyy= G. sin α =51,16sin11.30 =10,02daN/m.

Les combinaisons d'actions :

1) ELU

Suivant l'axe z-z

 $q_{z,sd1}{=}1.35G_{zz}{+}1.5p_{zz}=129{,}57\text{daN/m}$

 $q_{z,sd2}$ =1.35 G_{zz} +1.5 N_{zz} =167,73 daN/m

 $q_{z,sd3}=G_{zz}+1.5 V_{zz} = -119,68 daN/m$

 $q_{z,sd}$ =max ($q_{z,sd1}$, $q_{z,sd2}$, $q_{z,sd3}$) = 167,73 daN/m.

Suivant l'axe y-y

 $\begin{array}{l} q_{y,sd1}{=}1.35 \ G_{yy}{+}1.5 \ p_{yy} = 25,88 \mbox{daN/m} \\ q_{y,sd2}{=}1.35 \ G_{yy}{+}1.5 \ N_{yy} = \!\!33,\!50 \ \mbox{daN/m} \\ q_{y,sd3}{=}1.35 \ G_{yy} = \!\!13,\!52 \ \mbox{daN/m} \\ q_{y,sd} = \!\!max \ (q_{y,sd1}, \ q_{y,sd2} \ , \ q_{y,sd3}) \!= \mathbf{33,\!50} \ \mbox{daN/m} \\ \mathbf{2) ELS} \end{array}$

➢ Suivant l'axe z-z :

 $\begin{array}{l} q_{z,sd1} = Gzz + pzz = 91,4 daN/m \\ q_{z,sd2} = Gzz + Vzz = -63,07 \ daN/m \\ q_{z,sd3} = Gzz + Nzz = 116,84 daN/m \\ q_{z,sd} = max(q_{z,sd1}\,,\,q_{z,sd2}\,,\,q_{z,sd3}) = 116,84 daN/m \end{array}$

Suivant l'axe y-y:

 $q_{y,sd1} {=} Gyy {+} pyy {=} 18{,} 26 \text{daN/m}$

 $q_{y,sd2} {=} Gyy {+} Nyy {=} 23{,} 34 \text{daN/m}$

 $q_{y,sd} = max(q_{y,sd1}, q_{y,sd2}) = 23,34 daN/m$

-Les combinaisons les plus défavorables à retenir :

	E	E.L.U					
Charge	Flexion déviée	Déversement	L . L .5				
q _{z,sd} (daN/m)	167,73	-119,68	116,84				
$q_{y,sd}$ (daN/m)	33.50	13,52	23,34				

Tableau III.3: Les combinaisons les plus défavorables

Vérification de la flèche suivant YY :

$$f_{y} = \frac{2,05qy,sd\left(\frac{l}{2}\right)^{4}}{384*E*IZ} \le \frac{\left(\frac{L}{2}\right)}{200} \implies \frac{2,05*(23,34*10^{2})*\left(\frac{6340}{2}\right)^{4}}{384*210000*100,81*10^{4}} = 0,59 \text{mm} \le \frac{317}{200} = 1,58 \text{cm}$$

$$f_{y} = 0,59 \text{mm} < 1,58 \text{cm} \implies \text{condition vérifiée}$$

III.3.4 : Condition de la Resistance(ELU)

III.3.4.1 : Vérification à la flexion déviée:

$$\left(\frac{M_{y,sd}}{M_{ply,Rd}}\right)^{\alpha} + \left(\frac{M_{z,sd}}{M_{plz,Rd}}\right)^{\beta} \le 1$$

Avec : α =2 pour les profils en I

$$\beta = 5n \ge 1, n = N/Npl = 0$$
 $\implies \beta = 1$
Et : $M_{sd} = \frac{ql^2}{8}$

Tel que

Axe Z-Z:

$$My,sd = \frac{qz,sd*l^2}{8} = \frac{167,73*6,34^2}{8} = 842,75 daN.m \text{ (poutre sur deux appuis)}$$

> Axe Y-Y :

Mz,sd=
$$\frac{qy,sd*(\frac{1}{2})^2}{8} = \frac{33,50*(3,17)^2}{8} = 42,07$$
daN.m (poutre sur trois appuis)

La classe de la section transversale :

$$\varepsilon = \sqrt{(235/fy)} = \sqrt{(235/235)} = 1 \implies \varepsilon = 1$$

Âme fléchie : $\frac{d}{tw} = \frac{h - 2tf}{tw} = \frac{180 - 2*5,3}{8} = 21,2 \le 72\varepsilon$

 $\implies \hat{A}me \ de \ classe \ 1$

Semelle comprimée : $c/t_f = b/2/t_f = 5,68 \le 10\epsilon$

Semelle de classe 1

Donc la section est de la classe 01, $\gamma_{m0} = 1,1$

$$\mathbf{M_{ply,Rd}} = \frac{Wply*fy}{\gamma m0} = \frac{166,4*10^3*235}{1,1}*10^4 = 3554,90 \text{daN.m}$$
$$\mathbf{M_{plz,Rd}} = \frac{Wplz*fy}{\gamma m0} = \frac{34,6*10^3*235}{1,1}*10^4 = 739,18 \text{daN.m}$$
$$\left(\frac{750,15}{1886,40}\right)^2 + \left(\frac{37,45}{410,18}\right)^1 \leq 1 \quad \longrightarrow \quad 0,11 \leq 1 \text{ donc la résistance à la flexion est vérifiée.}$$

III.3.4.2 : Vérification au cisaillement

Pour la vérification au cisaillement on utilise les conditions suivantes :

 $Vz,sd \le Vplz,rd$; $Vy,sd \le Vply,rd$

Figure III.7 : représentation de cisaillement de la panne

$$Vz,sd = \frac{qz,sd*l}{2} = \frac{167,73*6,34}{2} = 531,70daN \text{ (poutre sur deux appuis)}$$
$$Vy,sd = \frac{0,625*qy,sd*l}{2} = \frac{0,625*33,50*6,34}{2} = 66,37daN \text{ (poutre sur trois appuis)}$$

$$Vply,rd = \frac{Avy*fy}{\gamma m0*\sqrt{3}} = \frac{15,3*10^2*235}{1,1*\sqrt{3}}*10^{-1} = 18871,48 daN$$

$$Vplz,rd = \frac{Avz*fy}{\gamma m0*\sqrt{3}} = \frac{11,3*10^2*235}{1,1*\sqrt{3}}*10^{-1} = 13937,76 daN$$

$$\begin{cases} Vz,sd \le Vplz,rd \\ Vy,sd \le Vply,rd \end{cases} \Rightarrow \begin{cases} 531,70 \le 13937,76 \\ 66,37 \le 18871,48 \end{cases}$$
: Donc la résistance des pannes au cisaillement est vérifiée.

III.3.4.3 : Vérification au déversement :

-Vérifier la semelle inferieure comprimé au risque de déversement :

$$My, sd \leq Mrd$$

$$My, sd = \frac{qz, sd^*(l)^2}{8} = \frac{119,68^*(6,34)^2}{8} = 601,32 daN.m$$

$$Mrd = Xlt^* \beta w^* \frac{Wply^* fy}{\delta m0}$$

$$\beta w = 1 \qquad \longrightarrow \text{ pour les sections de classe (1) et } \gamma m0 = 1,1$$

Calcul de coefficient de réduction pour le déversement

$$Xlt = \frac{1}{\varphi_{lt} + \left[\varphi_{lt}^{2} - \overline{\lambda_{lt}^{2}}\right]^{0.5}}$$

L'élancement λ_{LT} :

$$\lambda_{LT} = \frac{l/i_z}{C_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{l/i_z}{h/t_f} \right)^2 \right]^{0.25}} = \frac{317/2,05}{\left(1,132 \right)^{0.5} \left[1 + \frac{1}{2} \left(\frac{317/2,05}{18/8} \right)^2 \right]^{0.25}} = 20,92$$

Avec : l : longueur de ma0intien latéral

C1 : facteur dépendant des conditions de charge et d'encastrement

$$\lambda_{1} = \pi \sqrt{\frac{E}{fy}} = 93,9\varepsilon$$
$$avec : \varepsilon = \sqrt{\frac{235}{fy}} = \sqrt{\frac{235}{235}} = 1$$
$$Donc : \lambda_{1} = 93,9 * 1 = 93,9$$

L'élancement réduit $\overline{\lambda_{LT}}$ est détermine par la formule suivant :

$$\overline{\lambda_{LT}} = \left[\frac{\lambda_{LT}}{\lambda_1}\right] * \left[\beta_w\right]^{0.5} = \left[\frac{20,92}{93,9}\right] * \left[1\right]^{0.5} = 0,22$$

$$\varphi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda_{LT}} - 0.2 \right) + \overline{\lambda_{LT}^2} \right] = 0.5 \left[1 + 0.21 (0.22 - 0.2) + 0.22^2 \right] = 0.52$$

Donc : $Xlt = \frac{1}{0.52 + [0.52^2 - 0.22^2]^{0.5}} = 1$
 $Mrd = 1 + 1 + \frac{166.4 + 10^3 + 235}{1.1} + 10^{-4} = 3554.90 \, daN.m$

$$My, sd = 601,32 daN.m \le Mrd = 3554,90 daN.m$$

La condition est vérifiée, donc le profilé IPE180 convient pour les pannes.

III.4 : Calcul des liernes

-les liernes sont des tirants qui fonctionnent en traction, ils sont généralement formés de barres rondes ou de petites cornières.

III.4.1 : Calcul de l'effort maximal revenant aux liernes

$$\mathbf{R}$$
= 1,25 $Q_{y} \times l \div 2 = 1,25 \times 29,82 \times 3,17 = 118,16 \text{ daN}$

-Effort de traction dans le tronçon de lierne L_1 provenant de la panne sablière :

$$T_1 = \frac{R}{2} = \frac{118,16}{2} = 59,08 daN$$

-Effort dans le tronçon $L_2: T_2 = R + T_1 = 118,16 + 59,08 = 177,24 daN$

-Effort dans le tronçon L₃: $T_3 = R + T_2 = 118,16 + 177,24 = 295,4 daN$

-Effort dans le tronçon $L_4: 2T_4.\sin\theta = T3$

$$\theta = arctg \frac{1,36}{3,17} = 23,22^{\circ}$$

$$T_4 = \frac{T_3}{2\sin\theta} = \frac{295,4}{2\sin 23,22} = 374,61$$

III.4.2 : Dimensionnement des liernes :

Le tronçon le plus sollicite est : L₄

$$N_{sd} \leq N_{pl.Rd}$$

$$N_{pl.Rd} = \frac{A.f_y}{\gamma_{M0}} ; \quad N_{sd} = T_4 \leq \frac{A.f_y}{\gamma_{M0}}$$

$$A \geq \frac{T_4 \cdot \gamma_{M0}}{fy} \Rightarrow A \geq \frac{374.61 \times 1.1}{2350} = 0.175 cm^2$$

$$A = \frac{\pi \phi^2}{4} \geq 0.175 cm^2 \Rightarrow \phi \geq \sqrt{\frac{4 \times 0.175}{\pi}} = 0.47 cm$$

Soit une barre ronde de diamètre : $\phi = 0.50cm = 5mm$

Pour des raisons pratiques on opte pour une barre ronde de diamètre $\phi = 10mm$

III.5 : Calcul de l'échantignole

L'échantignole est une pièce permettant la fixation des pannes intermédiaires sur l'arbalétrier

Figure III.8 : représentation d'échantignole de la panne.

L'excentrement (t) est limité par la condition suivante :

$$2(b/2) \le t \le 3(b/2)$$

Pour IPE140 : **b**=73mm ; **h**=140mm

 $73mm \le t \le 109,5mm$; On adopte **t=90mm.**

-La combinaison la plus défavorable $\rightarrow G_z - 1,5V = -133,33 daN/m$

-L'effort Revenant à l'échantignole n'est rien que la réaction d'appui des pannes, on prendre l'effort maximal correspondant à l'échantignole intermédiaire (Non l'échantignole de rive)

Donc : $R = q_{uv} * L = 133,33 * 6,34 = 845,31 daN$

-Calcul de moment de renversement $\mathbf{M}_{\boldsymbol{R}}$:

-L'effort R risque de provoque le pliage de l'échantignole, donc :

 $M_R \leq M_{pliage}$

M_R=845,3*9= 7607,7 daN.cm

 $\mathbf{M}_{\text{pliage}}$: le moment résistant au pliage de l'échantignole ; $\mathbf{M}_{\text{pliage}} = Wel \frac{fy}{\gamma_{m_0}}$

 $\text{Tel que}: M_R \leq M_{\text{pliage}}$

Donc:
$$Wel \ge \frac{\gamma_{m_0} * M_R}{fy} = \frac{1.1 * 7607,7}{2350} \Longrightarrow Wel \ge 3.56 cm^2$$

Pour une section rectangulaire: $Wely = \frac{a * e^2}{6}$

Tel que : $\frac{a^*e^2}{6} \ge Wel \Longrightarrow e \ge \sqrt{\frac{6^*Wel}{a}}$

$$= e \ge \sqrt{\frac{6*3,56}{19}} \Longrightarrow e \ge 1,06cm = 10,6mm$$

On adopte : e=12mm.

III.6 : Calcul des lisses de bardage

Les lisses de bardages sont constituées de poutrelles (IPE, UAP, UPE) ou de profils minces pliés. Etant disposées horizontalement, elles sont portées soit par les poteaux de portiques, soit par les potelets intermédiaires. L'entre axe des lisses est déterminé par la portée admissible des bacs de bardage.

III.6.1 : Panneaux bardage

III.6.1.1 : Détermination de poids propre de bardage

D'après ce tableau ci-dessous on fait choisit un panneau de bardage de 40mm d'épaisseur ce qui donne un poids de **12.9kg/m²**

CARACTERISTICUES	DUPAENNEAU	Epaisseurs nominales du l'âme (mm)								
Charlet Laboration		30	40	50	60	80	100	120		
	Epaisseur parement extérieur (mm)	0,50 -0,63 - 0,75								
	Epaisseur parement intérieur (mm)	0,50 -0	,63							
DIMENSIONNELLES	Largeur utile	1000 mm								
	Largeur hors out	1080 mm								
	Longueur maximale hors tout	16000 mm								
	Débord en extrémité	50 - 100 - 200 - 300 mm								
PONDERALES (kg /m ²)	Ex . en épaisseurs 0,63 et 0,63 mm	12,5	12 ,9	13,3	13,7	14,5	15,3	16,1		

Tableau III.4 détail de panneau sandwich (bardage).

III.6.1.2 .Détermination de la portée maximale pour le bardage

Dans notre cas la charge du vent maximale sur les parois verticales

 $W= 550,01 \text{ N/m}^2= 0,55 \text{ KN/m}^2$ (Une pression). On suppose que le panneau de bardage soit repose sur plusieurs appuis (lisses), à l'aide de tableau ci-dessous on déterminera la portée maximale entre les lisses :

	2 APPUIS									3 APPUIS						
	Epaisseurs nominales de l'âme							EE (Epai	sseurs	nomii		le l'ân			
	120	100	80	60	50	40	30	PORTI	30	40	50	60	80	10 0	120	
PRESSION					141	119	101	3.00	149							PRESSION
DEPRESSION				156	142	128	96	5,00	109	132	148					DEPRESSION
PRESSION				142	123	103	84	3.20	130	150	160					PRESSION
DEPRESSION			151	139	124	109	84	- , -	97	119	133	148				DEPRESSION
PRESSION			145	127	109	90	71	3.40	115	132	153	160				PRESSION
DEPRESSION	158	158	133	124	109	94	74	- , -	86	107	120	132	127			DEPRESSION
PRESSION	148	148	131	114	97	79	60	3.60	102	117	137	157	160			PRESSION
DEPRESSION	135	135	120	111	96	81	66	- ,	78	97	108	119	121	123	123	DEPRESSION
PRESSION	134	134	119	103	87	70	52	3.80	91	104	123	142	160	160	160	PRESSION
DEPRESSION	131	131	109	99	85	71	59	5,00	72	88	98	108	115	122	122	DEPRESSION

Tableau III.5.le poids propre e panneau correspondante à chaque épaisseur.

 $W= 55.00 \text{ daN/m}^2$ Cette valeur elle est vérifiée pour une charge utile 104 daN/m^2 ce qui correspondant à entraxe maximal de 380cm avec une épaisseur de 40mm ; cas de panneau repose sur plusieurs appuis.

 \Rightarrow On prend l'entraxe entre les lisses **e=1.5m**.

Figure III.9. Disposition de la lisse de bardage

III.6.2. Données de calcul

- Chaque lisse repose sur deux appuis.
- Entre axes des lisses 1.5m.
- On dispose de **5**lignes de lisses sur chaque paroi.

III.6.3. Détermination des charges et surcharges.

a)Charges permanentes

- Poids propre de bardage (panneaux sandwich)..... 12.9 Kg/m²
- Poids propre de lisse estimé(UPE)...... 12.5Kg/m²

G= (P bardage + Paccessoire) * e + Plisse

e : espacement entre les lisses e = 1.5m

G = (12.9 + 5) * 1.5 + 12.5 = 39.5 Kg/ml

G=0.397KN/ml.

b) Surcharges climatiques dues au vent

On calcule les lisses de bardages avec la valeur obtenue : W=55.00 daN /m² (voir chapitre II).

D'ou : $V=W^*e=0.55 * e = 0.55 * 1.5 = 0.825KN/ml$.

1) Charges appliquées à l'ELU :

 $Q_{UY} = (1.35G) = 0.535 \text{KN/ml}$

 $Q_{UZ} = (1.5V) = 1,237 KN/ml$

2) Charges appliquées à l'ELS :

Qsy=0.397KN/ml

Q_{sz}=0.825KNml

Dimensionnement à LELS:

Il faut vérifier que : $f \leq fadm$.

$$fz = \frac{5XQZXL4}{384XEIy} = \frac{5X0.825X10^{-2}X(634)4}{384X21000XEIy} \le fadm \text{ (Poutre sur deux appuis)}$$

$$fadm = \frac{l}{200} = \frac{634}{200} = 3.17cm$$

$$Iy \ge \frac{5X0.825X10^{-2}X(634)^4}{384X21000X3.17}$$

Donc Iy \geq 269.25*cm*² ainsi on adopte un UPE120 dont Iy=363.5*cm*⁴ et P=12.10Kg/ml

La charge G devient alors :

 $G_{P} = (12.9 + 5) * 1.5 + 12.10 = 38.95 Kg/ml$

Et les combinaisons de charges deviennent:

ELU:

 $Q_{UY} = (1.35G)=0.525KN/ml$ $Q_{UZ} = (1.5V)= 1.236 KN/ml$ ELS: $Q_{Sy}=0.389KN/ml$

 $Q_{sz} = 0.825 \text{ KN/ml}$

Vérification de la flèche selon l'axe Y-Y (poutre sur trois appuis) :

 $fy = \frac{2.05XQsz(\frac{l}{2})4}{384XEIz} = \frac{2.05X0.825X10^{-2}X(\frac{634}{2})4}{384X21000X55.40} = 0.38 \le fadm = 1.58 \quad condition \ vérifiée$

III .6.4. Condition de la résistance à la limite (ELU) :

a)Vérification à la flexion bi-axiale :

$$\left[\frac{M_{y,sd}}{M_{ply,rd}}\right]^{\alpha} + \left[\frac{M_{z,sd}}{M_{Plz,rd}}\right]^{\beta} \le 1$$

Avec : $\alpha=2$, $\beta=1$ pour les sections de classe 1

• Axe Z-Z :

$$M_{Y=} \frac{Q_{UZ}l^2}{8} = \frac{1.237 \times 6.34^2}{8} = 6.215 KN/m$$
 (poutre sur deux appuis)

$$M_{Z=} \frac{Q_{UY} \left(\frac{l}{2}\right)^2}{8} = \frac{0.525 \times 3.17^2}{8} = 0.659 KN/m \text{ (Poutre sur trois appuis)}$$

$$Mply = \frac{W_{ply \times f_Y}}{ym0} = \frac{13.79 \times 23.5}{1} \, 10^{-2} = 11.11 KN/M$$
$$Mplz = \frac{W_{plz \times f_Z}}{ym0} = \frac{60.58 \times 23.5}{1} \, 10^{-2} = 14.23 KN/M$$

Et la condition sera :

$$\left[\frac{6.215}{11.11}\right]^2 + \left[\frac{0.659}{14.23}\right]^1 = 0.359 < 1$$
 Condition vérifiée

b) vérification au cisaillement :

Pour cette vérification on utilise la condition suivante(EC3 P 153)

$$Vz, sd = \frac{qz \times l}{2} = \frac{1.237 \times 6.34}{2} = 3.92KN/m$$
$$Vpl, rd = \frac{Avz \times fy}{\sqrt{3} \times 100} = \frac{5.38 \times 23.5}{\sqrt{3} \times 1} = 78.69KN/m$$
D'où Vz, sd = 3.92 < Vpl, rd = 78.69KN/m

Donc la résistance des lisses au cisaillement est vérifiée.

c) Vérification au déversement :

Calcul de l'élancement réduit

$$\overline{\lambda_{l,t}} = \left(\frac{\lambda_{l,t}}{\lambda_1}\right) X[\beta_A]^{0.5} \quad \text{avec} \quad \lambda_{l,t} = \frac{\frac{1z}{iz}}{\left(C1\right)^{0.5} \left[1 + \frac{1}{20} \times \left(\frac{1z}{\frac{1}{2}}\right)^2\right]^{0.5}}$$

$$\lambda_1 = \pi \times \left[\frac{E}{fy}\right]^{0.5} = 93.9\varepsilon \quad ; \quad \varepsilon = \left[\frac{235}{fy}\right]^{0.5} = 1 \quad ; \quad \lambda_{l,t} = \frac{\frac{55.40}{1.90}}{\left(1.132\right)^{0.5} \left[1 + \frac{1}{20} \times \left(\frac{\frac{55.40}{1.90}}{\frac{12}{0.8}}\right)^2\right]^{0.5}} = 25.133$$

$$\lambda_{l,t} = \left(\frac{25.133}{93.9}\right) X[1]^{0.5} = 0.26 < 0.4$$

La semelle comprimée est soutenue par le bardage, donc la vérification au déversement est inutile. Toutes les conditions sont vérifiées donc on adopte l'UPE120.

III.7.Calcul des liernes

Les suspentes sont des tirants qui fonctionnent en traction, elles sont généralement formées de barres rondes ou de petites cornières, leur rôle principal est d'éviter la déformation latérale des lisses.

III.7.1.Calcul de l'effort de traction dans la suspente la plus sollicitée.

Figure III.10.les efforts dans les lisses.

R=1.25x(1.35G)xl/2=1.25x(1.35x0.389)x6.34/2=0.656KN

Effort de traction dans le tronçon de lierne L1:

T1=R/2=2.08KN

Effort de traction dans le tronçon L2 :

T2=T1+R=0.656+2.08=2.736KN

Effort de traction dans le tronçon L3:

T 3=T2+R=2.736+2.08=4.816KN Efforts dans les diagonales L4 : $2T4\sin\theta=T3$ avec $\phi=\arctan 1.5/3.17=25.32^{\circ}$ T $4=T3/2\sin\theta=4.81/2\sin 25.32=5.623$ KN

• Calcul de la section des liernes :

Condition de vérification à la résistance :

 $Nstd \leq Npl, rd$

Avec $Npl, rd = A^*fy / \gamma m0$ et Nt, sd = T4 (la valeur maximale).

Donc A \geq Nt,sd $*\gamma m0 / fy$

 $A \ge \frac{5.62X1}{23.5} = 0.239 cm2$; $A = \pi \varphi^2 / 4$ d'où $\varphi \ge 0.55 cm$

Pour des raisons pratiques on opte pour une barre ronde de diamètre $\varphi = 10mm$.

III.8 : Calcul des potelets :

Les potelets sont les plus souvent des profilés laminées en I ou H destinés rigidifier la clôture (bardage) et résister aux efforts horizontaux su vent.

Le potelet travaille à la flexion sous l'action de l'effort du vent transmis par les bardages et les lisses, et à la compression sous l'effet de son poids propre, du poids du bardage et des lisses qui lui sont attachés, de ce fait fonctionne à la flexion composée.

III.8.1 : Evaluation des charges et surcharges revenant au potelet le plus chargé ;

A) Charges permanentes (G) :

Poids du barda	age	•••••		 .12.9Kg	g /m ²
Poids propre d	le la lisse	(UPE	120)	 .12.10K	g/ml
					2

Poids propres d'accessoires de pose......**5Kg/m**²

G=poids propre du potelet+poids propre des lisses+poids propres du bardage

H=Hauteur du potelet : H=7.31m

Poids propre du potelet à déterminer.

B) Surcharge climatique W :

La surcharge du vent sur le pignon est ;

W=55 $.00 daN/m^2$

V=W*4=55*4=220daN/m

III.8.2 : Le pré dimensionnement du potelet :

Sous la condition de flèche :

 $fz = \frac{5Xq_{ws}Xh4}{384XEIy} = \frac{5X2.20X10^{-2}X(731)4}{384X21000XEIy} \le fadm$

 $fadm = \frac{l}{200} = \frac{731}{200} = 3.65cm \rightarrow$ $ly \ge \frac{5X2.20X10^{-2}X(731)^4}{384X21000X3.65} \ge 1067.133cm3$

Ce qui correspond à un profilé IPE 330

Caractéristiques géométriques de l'IPE330

P(kg/m)	H(mm)	b(mm)	tw(mm)	tf(mm)	r(mm)	d(mm)
49.1	330	160	7.5	11.5	18	271
A(cm ²)	Iy(cm ⁴)	iy(cm)	Wpl,y(cm ³)	Iz(cm ⁴)	iz(cm)	Wpl,z(cm ³)
62.6	11770	13.71	804.3	788.1	3.55	153.7

Tableau III.6: Caractéristique et dimensions d'IPE330

Les charges permanentes :

III.8.3.Vérification de la stabilité au flambement flexion sous N et M à L'ELU :

Pour cette vérification on utilise la condition suivante :

$$\begin{split} & \frac{N_{sd}}{\chi_{min}.\left(A.^{fy}/\gamma_{m1}\right)} + \frac{K_Y.M_{Y,sd}}{W_{PLY}.\left(^{fy}/\gamma_{m1}\right)} + \frac{K_Z.M_{Z,sd}}{W_{PLZ}.\left(^{fy}/\gamma_{m1}\right)} \leq 1 \\ & \text{Avec} \qquad N_{sd} = 1.35G = 1,35 * 11.24 = 15.17KN \\ & M_{Y,sd} = 1.5 \ v \frac{l^2}{8} = 22.04KN. \ m \ , \\ & M_{sdz} = 0 \end{split}$$

Autour de l'axe YY (dans le plan de l'âme), le potelet risque de flamber sur toute sa longueur

Alors la longueur la longueur de flambement $l_{ky=}7.31m$

Autour de l'axe ZZ (dans le plan perpendiculaire à l'âme, le poteau est empêché de flamber sur toute sa longueur par les lisses de bardage.

Alors la longueur la longueur de flambement $l_{kz=}1.50m$

III.8.3.1.Calcul des élancements

$$\begin{cases} \lambda y = \frac{l_{ky}}{i_{ky}} = \frac{7.31}{7.42} = 98.517\\ \lambda z = \frac{l_{kz}}{i_{kz}} = \frac{1.50}{2,50} = 73.17 \end{cases}$$

III.8.3.2.Calcul de l'élancement critique

$$\varepsilon = \left(\frac{235}{fy}\right)^{0.5} = 1$$
 acier S235 D'où $\lambda cr = 93.3\varepsilon = 93.3 \times 1 = 93.1$

III.8.3.3.Calcul des élancements réduits

$$\overline{\lambda y} = \frac{\lambda y}{\lambda cr} \times \sqrt{\beta w} = \frac{98.517}{93.9\sqrt{1}} = 1.04 > 0.2 \text{ risque de flambement}$$
$$\overline{\lambda z} = \frac{\lambda z}{\lambda cr} \times \sqrt{\beta w} = \frac{73.17}{93.9\sqrt{1}} = 0.77 > 0.2 \text{ risque de flambement}$$
$$\sqrt{\beta w} = 1 \quad IPE \text{ 330 de classe 1}$$

III.8.3.4.Calcul du coefficient de réduction

 $\chi_{\min=\min(\chi_y,\chi_z)}$

Choix de la courbe de flambement (Tableau 5.5.3 Eurocode 3)

$$\frac{h}{b} = \frac{360}{160} = 1.97 < 1.2 \ et \ t_f = 11.5 \ mm < 40 \ mm \ (IPE \ 330)$$

Axe	de	Courbe de flambement	Facteur de flambement
flambement			
Y-Y		А	∝ _y =0.21
Z-Z		В	∝ _z =0.34

Coefficients de flambement correspondant à la section

III.8.3.5 : Calcul de χ_{min}

$$\chi_{y} = \frac{1}{\varphi_{y} + [\varphi_{y}^{2} - \lambda_{y}^{2}]^{0.5}} \text{ avec } \chi_{y} \le 1$$

$$\varphi_{y} = 0.5 [1 + \alpha_{y} (\lambda_{y} - 0.2) + \lambda^{2}_{y}]$$

$$\varphi_{y} = 0.5 [1 + 0.21(1.49 - 0.2) + 1.049^{2}] = 1.113 \text{ d'où } \chi_{y} = 0.63$$

$$\chi_{z} = \frac{1}{\varphi_{z} + [\varphi_{z}^{2} - \lambda_{z}^{2}]^{0.5}} \text{ avec } \chi_{z} \le 1$$

$$\varphi_{y} = 0.5 [1 + \alpha_{z} (\lambda_{z} - 0.2) + \lambda^{2}_{z}]$$

$$\varphi_{y} = 0.5 [1 + 0.34(0.77 - 0.2) + 0.77^{2}] = 0.89 \text{ d'où } \chi_{z} = 0.89$$

$$\chi_{min} = \min(0.63, 0.74) \ donc \ \chi_{min} = 0.63$$

III.8.3.6 : Calcul du facteur d'amplification

$$K_y = 1 - \frac{\mu_y \times N_{sd}}{X_y \times f_y \times f_y} \quad et K_y \le 1.5$$

Le potelet étant bi-articulé à ses extrémités et d'après le tableau de calcul de moments équivalents

 $\beta_{my=}\beta_{mq}=$ 1,3 (charge de vent uniformement répartie)

$$\begin{split} \mu_{y=}\overline{\lambda y} \Big(2 \times \beta_{my} - 4\Big) + \Big(\frac{W_{ply} + W_{ply}}{W_{ply}}\Big) \\ \mu_{y=} 1.04 \Big(2 \times 1.3 - 4\Big) + \Big(\frac{8043 - 713.1}{713.1}\Big) &= -1.31 < 0.9 \\ Ky &= \frac{1 - (-1.31) \times 15.17}{0.63 \times 62.6 \times 23.5} = 0.98 < 1.5 \\ M_{ply} &= \frac{W_{ply} \times f_y}{\gamma_{m1}} = \frac{804.3 \times 23.5}{1.1} = 171.8 KN. m \\ N_{pl,rd} &= \frac{A \times f_Y}{\gamma_{m0}} = 6260 \times 235 = 1471 \times 10N \text{ soit } N_{pl,rd} = 1471 KN \\ \frac{15.17}{0.63 \times 1471} + \frac{0.98 \times 22.04}{171.81} = 0.143 < 1 \quad \text{(Condition vérifiée)} \end{split}$$

III.9.Vérification de la stabilité au déversement

III.9.1. Calcul de l'élancement réduit

$$\begin{split} \lambda_{LT} &= \left(\frac{\lambda_{l,t}}{\lambda_{1}}\right) X[\beta_{A}]^{0.5} \quad \sqrt{\beta w} = 1 \quad IPE \; 330 \; \text{de classe 1} \\ \lambda_{l,t} &= \frac{\frac{lz}{lz}}{(C1)^{0.5} \left[1 + \frac{1}{20} \times \left(\frac{lz}{lz}\right)^{2}\right]^{0.5}} \\ \lambda_{l,t} &= \frac{\frac{101}{2.05}}{(1.132)^{0.5} \left[1 + \frac{1}{20} \times \left(\frac{\frac{101}{2.05}}{\frac{180}{8}}\right)^{2}\right]^{0.5}} = 41.58 \; ET \; \sqrt{\beta w} = 1 \quad IPE \; 330 \text{de classe} \\ \lambda_{1} = \pi \times \left[\frac{E}{fy}\right]^{0.5} = 93.9\varepsilon, \; \varepsilon = \left[\frac{235}{fy}\right]^{0.5} = 1 \end{split}$$

Donc

$$\lambda_{LT} = \frac{104.4}{93.9} \times 1^{0.5} = 1.11 > 0.4$$
 (pas de risque de déversement)

III.10.Conclusion

Ce chapitre que nous nous a permis de déterminer la nature et le dimesionnemnt des profilés des éléments secondaires, qui devront résister aux différentes sollicitations

1

Chapitre IV Action d'ensemble

IV.1.Introduction

Après le dimensionnement des éléments de la structure, La stabilité d'ensemble est vérifiée sous l'action du vent.

IV.2.Calcul des forces à l'aide des pressions de surfaces

La force exercée par le vent F_w peut être déterminé par sommation vectorielle des forces qui donne par :

$$\begin{cases}
F_{w,e} = C_d * \sum W_e * A_{ref} & \text{Forces extérieures.} \\
F_{w,i} = \sum W_i * A_{ref} & \text{Forces intérieures.} \\
F_{fR} = C_{fr} * q_p (ze) * A_{fr} & \text{Forces de frottement.} \end{cases}$$

[RNV2013,p :58 ;paragraphe 2.6.2]

IV.2.1.Vent sur pignonV2:

a/Forces extérieures

Parois verticales :

On a: $W_e = q_p(ze) * C_{pe}$; $q_p(ze) = 504,6N/m^2$; $C_d = 1$

Zone A: $C_{pe} = -1$ \longrightarrow $We = 0.504 * -1 = -0.504 kN/m^2$

Zone B : $C_{pe} = -0.8$ \longrightarrow $We = 0.504 * -0.8 = -0.403 kN/m^2$

Zone	Cd	We(kn/m ²)	A _{ref} (m2)	We* $A_{ref}(kN)$
А	1	-0,504	18,24	-9,19
В	1	-0,403	72,96	-29,40
C	1	-0,252	99	-24,94
D	1	0,403	192	77,37
E	1	-0,151	192	-28,99

Tableau IV.1. Valeurs des forces extérieures de la paroi verticale sens V2

Donc:
$$F_{w,e} = C_d * \sum W_e * A_{ref}$$

 $\Rightarrow F_{w,e} = -15,15KN$

Toiture :

Zone Fsup: $C_{pe} = -1,56$ \longrightarrow $We = 0,504 * -1,56 = -0,786 kN/m^2$ Zone G : $C_{pe} = -1,3$ \longrightarrow $We = 0,504 * -1,3 = -0,655 kN/m^2$

Zone	Cd	We(kn/m ²)	$A_{ref}(m^2)$	We*Aref (kN)
Fsup	1	-0,787	5,89	-4,63
Finf	1	-0,787	5,89	-4,69
G	1	-0,655	37,82	-24,77
Н	1	0,317	198,40	-62,89
Ι	1	-0,267	786,44	-209,97

 Tableau IV.2.
 Valeurs des forces extérieures de la toiture sens V2

Donc: $F_{w,e} = -306,95KN$

b/Forces intérieures

Parois verticales :

On a: $W_i = q_p(ze) * C_{pi}$; $q_p(ze) = 504,6N/m^2$

Zone A:
$$C_{pi}=0.09$$
 \longrightarrow $Wi = 0.504 * 0.09 = 0.045 kN/m^2$

Zone B : C_{pi} =0,09 \longrightarrow $Wi = 0,504 * 0,09 = 0,045 kN/m^2$

Zone	$A_{ref}(m^2)$	Wi (KN/m ²)	We*Aref (kN)
А	18,24	0,045	0,82
В	72,96	0,045	3,28
С	99	0,045	4,45
D	192	0,045	8,64
E	192	0,045	8,64

 Tableau IV.3.
 Valeurs des forces intérieures de la paroi verticalesens
 V2

Donc:
$$F_{w,i} = \sum W_i * A_{ref}$$

$$\Rightarrow F_{w,i} = 25,838KN$$

Toiture :

Zone	$A_{ref}(m^2)$	Wi (KN/m ²)	We*Aref (kN)
Fsup	5,89	0,045	0,265
Finf	5,89	0,045	0,265
G	37,82	0,045	1,701
Н	198,40	0,045	8,928
Ι	786,44	0,045	35,389

 Tableau IV.4.
 Valeurs des forces intérieures de la toiture sens V2

Donc : $F_{w,i} = 46,54 KN$

c/Forces de frottements.

On a : $F_{fR} = C_{fr} * q_p (ze) * A_{fr}$

Cfr: le coefficient de frottement (on a les ondulations sont perpendiculaires à la direction du

vent, Donc C_{fr}= 0,04) [RNV2013p ;59 ; paragraphe 2.6.3]

Afr: l'aire de l'élément de surface considéré

> Parois verticales :

 $A_{fr} = 2 * d * h = 2 * 31,7 * 6 = 380,4m^2$

$$F_{fr} = 0,04 * 50,46 * 380,4$$

F_{fr}=767,79daN

> Toiture :

$$A_{fr} = 2 * d * h = 2 * 31,7 * \frac{16}{\cos 11,30} = 1034,45m^2$$

$$F_{fr} = 0,04 * 50,46 * 1034,45$$

F_{fr}=2087,94daN

d/ Force totale exercée par le vent Fw:

Parois verticales

 $\mathbf{F}_{w} = 10,68 \text{KN}$

> Toiture

 $F_w = -260,40 \text{KN}$

V.2.2. Vent sur long panV1:

a/Forces extérieure

Parois verticales :

Zone	Cd	We(kN/m ²)	$A_{ref}(m^2)$	We*Aref (kN)
А	1	-0,504	18,24	-9,19
В	1	-0,403	72,96	-29,40
С	1	-0,252	100,8	-25,40
D	1	0,403	190,2	76,65
E	1	-0,151	190,2	-28,72

 Tableau IV.5.
 Valeurs des forces extérieures de la paroi verticale sens V1

Donc: $F_{w,e} = -16,36KN$

Toiture :

Zone	Cd	We(kn/m ²)	$A_{ref}(m^2)$	We*Aref (kN)
Fsup	1	-0,716	5,89	-4,217
Finf	1	-0,716	5,89	-4,217
G	1	-0,474	37,35	-17,703
Н	1	-0,206	209,47	-43,150
Ι	1	-0,302	253,6	-76,587
J	1	-0,504	253,6	-127,814

Tableau IV.6. Valeurs des forces extérieures de la toiture sens V1

Donc: $F_{w,e} = -273,688KN$

b/Forces intérieures

Parois verticales :

Zone	$A_{ref}(m^2)$	Wi (KN/m ²)	We*Aref (kN)
А	18,24	-0,09	-1,641
В	72,96	-0,09	-6,566
С	100,8	-0,09	-9,072
D	190,2	-0,09	-17,118
E	190,2	-0,09	-17,118

Tableau IV.7. Valeurs des forces intérieures de la paroi verticale sensV1

Donc : $F_{w,i} = -51,515KN$

Toiture :

Zone	$A_{ref}(m^2)$	Wi (KN/m ²)	We*Aref (kN)
Fsup	5,89	-0,09	-0 ,530
Finf	5,89	-0,09	-0,530
G	37,82	-0,09	-3,361
Н	209,47	-0,09	-18,852
Ι	253,6	-0,09	-22,824
J	253,6	-0,09	-22,824

Tableau IV.8. Valeurs des forces intérieures de la toiture sens V1

Donc : $F_{w,i} = -68,921KN$

d/ Force totale exercée par le vent Fw:

Parois verticales

 $F_w = -67,88 \text{KN}$

> Toiture

 $F_w = -342,60 \text{KN}$

IV.3.Détermination des moments renversants (M_R)

IV.3.1. Cas du vent

On a deux composantes d'action du vent, une composante horizontale (Fwe,h) et composante verticale(Fwe,v).

a/ vent perpendiculaire au pignon V2

Forces extérieurs : $F_{w,e} = C_d * \sum W_e * A_{ref}$

	composante	composante	point d'application		
Zone	horizontale T(KN)	verticale U(kN)	X(m)	Y(m)	Z(m)
D	77,37	0	16	0	3
Е	-28,99	0	16	31,7	3
F1	0	-4,63	1,9	0,76	6,3
F2	0	-4,69	30,1	0,76	6,3
G	0	-24,77	12,2	0,76	6,89
Н	0	-62,89	16	3	7
Ι	0	-209,97	16	12,05	7
Fwe,h	48,38		X _T =16	Y _T =-18,99	$Z_T = 3$
Fwe,v		-306,95	X _U = 15,69	Y _U = 8,94	Z _U =6,96

Tableau IV.9. valeurs des forces extérieurs horizontales et verticales sens V2

$$X_{T} = \frac{\sum Ti * Xi}{\sum Ti} = \frac{77,37*16 - 28,99*16}{48,38} = 16m$$
$$Y_{T} = \frac{\sum Ti * Yi}{\sum Ti} = \frac{77,37*0 - 28,99*31,7}{48,38} = -18,99m$$

$$\begin{split} & Z_T = \frac{\sum Ti^* Zi}{\sum Ti} = \frac{77,37*3-28,99*3}{48,38} = 3m \\ & X_U = \frac{\sum Ui^* Xi}{\sum Ui} = \frac{-4,63*1,9-4,69*30,1-24,77*12,2-62,89*16-209,97*16}{-306,95} = 15,69m \\ & Y_U = \frac{\sum Ui^* Yi}{\sum Ui} = \frac{-4,63*0,76-4,69*0,76-24,77*0,76-62,89*3-209,97*12,05}{-306,95} = 8,94m \\ & Z_U = \frac{\sum Ui^* Zi}{\sum Ui} = \frac{-4,63*6,3-4,69*6,3-24,77*6,89-62,89*7-209,97*7}{-306,95} = 6,96m \end{split}$$

Forces intérieurs :
$$F_{w,i} = \sum W_i * A_{ref}$$

Zone	composante horizontale	composante verticale	point d'application			
Zone	T(KN)	U(kN)	X(m)	Y(m)	Z(m)	
D	8.64	0	16	0	3	
Е	8.64	0	16	31.7	3	
F1	0	0.265	1.9	0.76	6.3	
F2	0	0.265	30.1	0.76	6.3	
G	0	1.701	12.2	0.76	6.89	
Н	0	8.928	16	3	7	
Ι	0	35.385	16	12.05	7	
Fwe,h	17.28		X _T = 16	Y _T = 15,85	Z _T =3	
Fwe,v		46.548	X _U = 15.861	Y _U = 9.80	Z _U =6,98	

Tableau IV.10.valeurs des forces intérieure horizontales et verticales sens V2
La Force résultante

	composante	composante	Coordonné	ées des points d'a	application
	horizontale T(KN)	verticale U(kN)	X(m)	Y(m)	Z(m)
Fw,e	48.38	0	16	18.99	3
Fw,e	0	-306.95	15.69	8.94	6.96
Fw,i	17.28	0	16	15.85	3
Fw,i	0	-46.548	15.861	9.80	6.98
Fwh	65.66		16	18.16	3
Fwh		-353.49	15.78	9.05	6.96

Tableau IV.11. valeurs des forces Fw sens	V2
---	----

Calcul du moment de renversement

a/ Le moment renversement par rapport à l'axe XX :

 $M_{R,XX} = fv * Yv = -353,49 * 9,05 = -3199,08 KN.m$

b/ le moment renversement par rapport à l'axe YY :

 $M_{R,yy} = fv * Xh = 65,66 * 16 = 1050,56 KN.m$

• Calcul du moment stabilisant :

Ms = W*b/2

W : poids total du bâtiment= 507,20KN

Ms = 507,20*16 = **8115,20KN.m**

 $Mr \prec Ms$ La stabilité est vérifiée.

b/ vent perpendiculaire au long pan V1

Forces extérieurs : $F_{w,e} = C_d * \sum W_e * A_{ref}$

7	composante	composante	point d'application			
Zone	T(KN)	U(kN)	X(m)	Y(m)	Z(m)	
D	76.650	0	0	15.85	3	
Е	-28.720	0	16	15.85	3	
F1	0	-4.217	1.9	0.76	6.3	
F2	0	-4.217	1.9	29.8	6.3	
G	0	-17.703	1.9	15.85	6.3	
Н	0	-43.150	8 15.85		6.6	
Ι	0	-76.587	15.24	15.85	6.98	
J		-127.814	16	15.85	7	
Fwe,h	47.93		X _T = -9.58	Y _T = 15,85	Z _T =3	
Fwe,v		-273.68	X _U = 13.17	Y _U = 15,83	Z _U =6,86	

Tableau IV.12. valeurs des forces extérieurs horizontales et verticales sens V1

$$X_{T} = \frac{\sum Ti * Xi}{\sum Ti} = \frac{76,650 * 0 - 28,720 * 16}{47,93} = -9,58m$$

$$Y_{T} = \frac{\sum Ti * Yi}{\sum Ti} = 15,85m$$

$$Z_{T} = \frac{\sum Ti * Zi}{\sum Ti} = 3$$

$$X_{U} = \frac{\sum Ui * Xi}{\sum Ui} = 13,17m$$

$$Y_{U} = \frac{\sum Ui * Yi}{\sum Ui} = 15,83m$$

$$Z_{U} = \frac{\sum Ui * Zi}{\sum Ui} = 6,86$$

Forces intérieurs : $F_{w,i} = \sum W_i * A_{ref}$

	composante	composante	p	oint d'applicatio	n
Zone	horizontale T(KN)	verticale U(kN)	X(m)	Y(m)	Z(m)
D	-17.118	0	0	15.85	3
Е	-17.118	0	16	15.85	3
F1	0	-0.530	1.9	0.76	6.3
F2	0	-0.530	1.9	29.8	6.3
G	0	-3.301	1.9	15.85	6.3
Н	0	-18.852	8	15.85	6.6
Ι	0	-22.824	15.24	15.85	6.98
J		-22.824	16	15.85	7
Fwe,h	-34.24		$X_T = 8$	$Y_{T} = 15,85$	$Z_T=3$
Fwe,v		-273.68	X _U = 12.66	Y _U = 15,83	Z _U =6,83

Tableau IV.13. valeurs des forces intérieurs horizontales et verticales sens V1

La Force résultante

	composante composante		Coordonnées des points d'application			
	T(KN)	U(kN)	X(m)	Y(m)	Z(m)	
Fw,e	47.93	0	-9.58	15.85	3	
Fw,e	0	-273.68	13.17	15.83	6.86	
Fw,i	-34.23	0	8	15.85	3	
Fw,i	0	-68.86	12.66	15.84	6.83	
Fwh	13.7		-53.06	15.85	3	
Fwv		-342.54	13.06	15.83	6.85	

Tableau IV.14.valeurs des forces Fw sens V1

• Calcul du moment de renversement

a/ Le moment renversement par rapport à l'axe XX :

 $M_{R,XX} = fv * Yv = -342,54 * 15,83 = -5422,40 KN.m$

b/ le moment renversement par rapport à l'axe YY :

 $M_{R,vv} = fh * Xh = 13,7 * -53,50 = -732,95KN.m$

• Calcul du moment stabilisant :

Ms = W*b/2

W : poids total du bâtiment=507,20KN

Ms = 507,20*15,85= **8039,12KN.m**

 $Mr \prec Ms$ La stabilité est vérifiée.

IV.4.CONCLUSION

Tous les moments résistants stabilisateurs sont supérieurs aux moments renversants, donc il n'y'a pas de risque au renversement et la stabilité d'ensemble est assurée.

Chapitre V Etude sismique

V.1.Introduction

Le séisme est un phénomène naturel qui affecte la surface de la terre, produit des dégâts destructifs au niveau des constructions et par conséquent les vies humaines et pour y remédier de nombreuses études ont été élaborées à ce sujet.

V.2.Méthode de calcul

D'après le Règlement parasismique Algérien RPA 99 Version 2003, le calcul des forces sismiques peuvent se faire par trois méthodes de calcul :

- Méthode statique équivalente.
- Méthode d'analyse spectrale.
- > Méthode d'analyse dynamique par accélérographe.

V.3.La Méthode statique équivalente

Dans notre cas, la méthode statique équivalente est applicable.

V.3.1.Principe de la méthode :

-Les forces réelles dynamiques qui se développent dans la construction sont remplacées par un système de forces statiques fictives dont les effets sont considérés équivalents à ceux de l'action sismique.

V.3.2.Calcul de la force sismique totale :

La force sismique totale V, appliquée à la base de la structure, doit être calculée successivement dans direction horizontales orthogonales selon la formule :

$$V = \frac{A.D.Q}{R}W$$
 [RPA99 version 2013, P25; Paragraphe4.2.3]

- A : Coefficient d'accélération de la zone
- D : facteur d'amplification dynamique moyen
- R : Coefficient de comportement global de la structure
- Q : Facteur de qualité
- W : Poids totale de la structure

Coefficient d'accélération de zone A :

Il est en fonction de la zone sismique et du groupe d'usage.

-Dans notre cas : la Zone sismique est : IIa et un groupe d'usage 1B(ouvrages de grande importance)

Donc A=0,20

> Facteur d'amplification dynamique moyen D :

Il est en fonction de la catégorie de site, facteur de correction d'amortissement (η) et de la période fondamentale de la structure (T)

$$D = \begin{bmatrix} 2,5\eta & \longrightarrow & 0 \le T \le T_2 \\ 2,5\eta (T_2/T)^{2/3} & \longrightarrow & T_2 \le T \le 3s \\ 2,5\eta (T_2/3)^{2/3} (3/T)^{5/3} & \longrightarrow & T \ge 3s \end{bmatrix}$$

T2: période caractéristique, associée à la catégorie du site

On a catégorie du site est : catégorie S₃ (site meuble).

Donc $T_2 = 0.5s$ et $T_1 = 0.15s$ [**RPA99 version 2003, P34 ; tableau4.7**].

 η : Le facteur de correction d'amortissement est donné par :

$$\eta = \sqrt{7/(2+\xi)} \ge 0.7$$

 ξ : Le pourcentage d'amortissement critique en fonction du matériau constitutif, du type de structure et de l'importance des remplissages.

On a \subset remplissage Dense

Portique en acier

Donc $\xi = 5\%$

```
[RPA99, P26; tableau4.2].
```

 $H_{\text{Et}} \quad \eta = \sqrt{7/(2+5)} = 1$

La période fondamentale (T) :

La valeur de la période fondamentale (T) de la structure peut être estimée à partir de formules empirique

La formule empirique à utiliser selon les cas :

$$T = C_T . h_N^{3/4}$$

 h_N : hauteur mesurée en mètres à partir de la base de la structure jusqu'au dernier niveau(N). =7,6m

 C_T : coefficient, il est en fonction du système de contreventement et du type de remplissage

le système de contreventement est portique auto stables en acier sans remplissage en maçonnerie

```
Donc C<sub>T</sub> =0,085 [RPA99 version 2003, P31 ; tableau4.6].
```

```
T = 0,0.85 * 7,6^{3/4} = 0.39
```

T=0,39s

On a T₂= 0,5s \longrightarrow 0 \leq T \leq T₂ = 0 \leq 0,39 \leq 0,5

Donc D=2,5 η =2,5*1=2,5

D=2,5s

> Coefficient de comportement R :

La valeur de « R » est donnée en fonction du système contreventement, Dans notre structure on a un système de portique auto stable ordinaires,

Donc R= 4 [RPA99 version 2003, P28 ; tableau4.3].

Facteur de qualité Q:

Le facteur de qualité est fonction de :

- > La redondance et la géométrie des éléments qui la constituent.
- ➢ La régularité en plan et en élévation.
- La qualité du contrôle de la construction.

Il est déterminé par la formule $Q = 1 + \sum_{1}^{6} Pq$ [**RPA 99 version, P29, équation 4.4**]

 P_q : la pénalité à retenir selon le critère de qualité « q » est satisfaite ou non

q : critère de qualité.

Pq =0.10 [**RPA 99 version 2003, P30, tableau4.4**]

Donc Facteur de qualité **Q=1.25**

> Détermination du poids total de la structure W :

 $W = \sum Wi$ Avec $Wi = W_{Gi} + \beta W_{Qi}$ [RPA 99 versioné2003, P30, équation 4.5].

 W_{Gi} : poids du aux charges permanentes et à celles des équipements fixes éventuels, solidaires de la structure

W_{Qi} : charges d'exploitation.

 β : Coefficient de pondération.

-Dans notre cas, le type d'ouvrage est un hangar, donc :

 β =0,50 [RPA 99 version 2003, P30, tableau4.5].

> Calcul des charges permanente W_{Gi}:

$$W_{GI} = 880.17$$
KN.

 $W_{QI} = ((P_{neige} + P_{vent})S_{toiture} = (0.298 + 1.911)1105.696 = 2442.48 \text{ KN}$ W=880.17+0.5X2442.48=2101 .41KN

Calcul de la force sismique :

$$V = \frac{A.D.Q}{R}W = \frac{0.15 * 2.5 * 1.10}{4} * 2101.41 = 216.70 \text{ KN}$$

Donc : V=216.70KN

V.3.3.Distribution des forces sismiques

• Distribution sur la hauteur

V=Ft+ $\sum Fi$

 $F = \frac{(V - Ft)Wi \times Hi}{\sum_{j=1}^{h} WjXHj}$

[RPA 99 version 2003, P32, formule4.10]. [RPA 99 version 2003», P32, formule4.11].

Fi : Effort horizontal au niveau i

Hi : Hauteur du plancher ou s'exerce la force Fi

Hj : Niveau du plancher quelconque

Wi et Wj : poids revenants aux planchers i et j

 $T=0.30s < 0.7 \ donc \ Ft = 0$

Pour notre hangar considéré comme structure à un seul niveau Fi=V=216.70KN

Rx=4 : portique auto stable ordinaire

Ry = 4: palée triangulé en X

Sens longitudinal sens X : Fix =Vx=216.70KN

Sens transversal sens Y : Fiy =Vy=216.70KN

V.4.Comparaison entre les forces sismiques et les forces dues au vent

W=0.832 KN /m2 (chapitre 02)

Fix=0.832 X S toiture =0.832X1105.69=919.99 KN $/m^2$

Fiy==0.832 X S toiture =0.832X1105.69=919.99 KN /m²

V.5.Conclusion

Les sollicitations dues au vent sont plus importantes que celles dues au séisme, ainsi nous retiendrons uniquement l'action du vent pour le dimensionnement des portiques et contreventement de notre ouvrage.

Chapitre VI Etude de Contreventements

et stabilité

VI.1.Introduction

Les contreventements sont des dispositifs conçus pour reprendre les efforts du vent dans la structure et les descendre au sol. Ils sont disposés soit en toiture dans le plan des versant (poutre au vent), soit en façades (palées de stabilité), et doivent reprendre les efforts du vent appliquées tant sur les pignons que sur les long-pans. La stabilité est ainsi assurée dans les trois directions de l'espace. On distingue trois types essentiels de contreventements :

- Triangulation (treillis).
- Rigidifications des nœuds (cadre-portique).
- Remplissage (voiles, diaphragme).

VI.2.Contreventements de toiture (poutre au vent)

La transmission des efforts sur le pignon passe successivement du bardage aux lisses, aux potelets puis à la traverse du portique, cette dernière n'est pas rigide transversalement, il est nécessaire de la stabiliser en construisant un dispositif dans le plan de la toiture. La poutre contreventée sera calculée comme une poutre a treillis reposant sur trois appuis et soumise aux réactions horizontales des potelets ; auxquels on adjoint les efforts.

Figure IV.1 : Schéma statique de la poutre au vent

VI.2.1.Evaluation des efforts horizontaux :

On a $F_{fr} = 28.55$ KN et $W_i = 0.55$ KN/m²

(Voir Chapitre Action d'Ensemble)

Chapitre IV

$$F_i = (W_i \times S_i) + \frac{F_{fr}}{n}$$

Avec :

 $F_{\rm fr}$: force de frottement

n = 5: Nombre de nœuds au niveau de la toiture

Donc :
$$\frac{F_{fr}}{n} = \frac{28.55}{5} = 5.71 \text{ KN}$$

Calcule de S_i :

$$S_i = h_i \times \frac{l_i}{2}$$

Les résultats de $F_i \mbox{ sont résumés dans le tableau suivant :}$

Ι	1	2	3
h _i (m)	6	6.463	7.313
l _i (m)	2	4	4
$S_i(m^2)$	12	12.926	14.626
W _i (KN/m ²)	0.55	0.55	0.55
Wi.Si(KN)	6.6	7.109	8.044
$\frac{F_{fr}}{n}$	5.71	5.71	5.71
F _i (KN)	12.31	12.819	13.754

Tableau Error! No text of specified style in document.I.1:Les valeurs de F_i

$$R = \frac{\sum F_i}{2} = \frac{2(F_1 + F_2) + F_3}{2} = \frac{2(12.31 + 12.819) + 13.754}{2} = 32.00KN$$

VI.2.2.Effort de traction dans les diagonales

On ne fait travailler que les diagonales tendues et on considère que les diagonales comprimées ne reprenant aucun effort.

Figure Error! No text of specified style in document.I.1 : Schéma statique de la poutre au vent avec les efforts.

La diagonale la plus sollicitée en traction est celle proche de l'appui :

 $\tan \theta = \frac{4}{6.34} \quad \Rightarrow \quad \theta = \arctan \frac{4}{6.34} = 32.24^{\circ}$

 $\Sigma F_y = 0 \Rightarrow R + F_1 + F_d \times Cos\theta = 0$

D'où :

 $F_d = \frac{R-F1}{Cos\theta} = \frac{32.00 - 12.31}{COS32.34^\circ} = 23.30KN$

VI.2.3.Section de la diagonale :

Calcul de la section brute A

$$N_{Sd} \le N_{pl,Rd} = \frac{Af_y}{\gamma_{M0}}$$

$$A \ge \frac{N_{Sd}.\gamma_{M0}}{f_y} = \frac{23.30 \times 1.1}{23.5} = 1.09 \text{ cm}^2$$

On adopte une cornière : $L(60 \times 60 \times 6)$ qui correspond à une section A=6.88cm²

VI.2.4.Vérification à la résistance ultime de la section :

Condition de résistance : N_{Sd} = 23.30KN \le N_{u,Rd} = \frac{0.9A_{net}.f_u}{\gamma_{M0}}

Soit une cornière isolée de $(60 \times 60 \times 6)$ avec un boulon de 16mm.et trous de18mm

Section nette : Anet = $A - (e \times d) = 6.88 - (0.6 \times 1.8) = 5.8 cm^2$

$$N_{u,Rd} = \frac{0.9 \times 5.88 \times 36}{1.25} = 150.33 \text{ KN}$$

 $N_{Sd} = \ 23.30 \text{KN} \leq N_{u,Rd} = 150.33 \text{ KN} \quad \text{Vérifiée}.$

Donc la cornière $L(60 \times 60 \times 6)$ convient pour les diagonales de la poutre au vent.

VI.3.Vérification des pannes intermédiaires à la résistance (montant de la poutre au vent) :

$$\left[\frac{M_{y,Sd}}{M_{NY,Rd}}\right]^{\alpha} + \left[\frac{M_{z,Sd}}{M_{Nz,Rd}}\right]^{\beta} \le 1 \quad \alpha = 2 \text{ et } \beta = 5n \beta \ge 1$$

Avec:

$$\begin{split} M_{Ny,Rd} &= M_{ply,Rd} \left[\frac{1-n}{1-0.5a} \right] \\ M_{Nz,Rd} &= M_{plz,Rd} \left[1 - \left(\frac{n-a}{1-a} \right)^2 \right] \\ a &= \min \left(\frac{A_w}{A}; 0.5 \right) \\ n &= \frac{N_{Sd}}{N_{pl,Rd}} ; N_{pl,Rd} = \frac{A \times f_y}{\gamma_{M1}} ; M_{ply,Rd} = \frac{w_{ply} \times f_y}{\gamma_{M1}} ; M_{plz,Rd} = \frac{w_{plz} \times f_y}{\gamma_{M1}} \\ M_{ply,Rd} &= \frac{w_{ply} \times f_y}{\gamma_{M0}} = \frac{88.13 \times 235}{1} = 20.71 \text{ KN/m.} \\ M_{plz,Rd} &= \frac{w_{plz} \times f_y}{\gamma_{M0}} = \frac{19.2 \times 235}{1} = 4.51 \text{ KN/m.} \\ N_{pl,Rd} &= \frac{A \times f_y}{\gamma_{M1}} = \frac{16.4 \times 23.5}{1.1} = 385.4 \text{ KN/m.} \end{split}$$

2020/2021

VI.3.1. Les charges revenant à la panne intermédiaire

G = 0.372 KN/m

 $S_n = 0.68 \ KN/m$

Compression

 $V = F_2 = 12.81 KN$

Combinaisons de charges

qsd = 1.35G + 1.5N

 $Nsd = 1.35F_2$

Donc :

 $q_{\text{Sd}} = 1.35 \times 0.372 \text{+} 1.5 \times 0.68 = 1.522 \text{ KN/m}$

 $q_{z,\;Sd}=q_{Sd}\!\!\times\cos\alpha=1.522\!\times\cos\,11.30^\circ=1.492KN/m$

 $M_{y,Sd} = \frac{q_{z,Sd} \times l^2}{8} = \frac{1.492 \times 6.34^2}{8} = 7.64$ KN. m

 $q_{y,\,Sd}=q_{Sd}\times sin \; \alpha=1.522\times sin \; 11.30^\circ=0.298 \text{KN/m}$

$$M_{z,Sd} = \frac{q_{y,Sd} \times (l/2)^2}{8} = \frac{0.298 \times (6.34/2)^2}{8} = 0.374$$
KN.m

Nsd =1.35 × 12.81= 17.293KN

a)Incidence de l'effort normal

Si :N_{Sd} \leq min (0.25N_{pl, Rd}; 0.5A_W $\times \frac{f_y}{\gamma_{M1}}$) \rightarrow Il n'y a pas d'interaction entre le moment résistant

et l'effort normal.

 $0.25 \,\, N_{pl,\,Rd} = 0.25 \times 385.4 = 96.35 \,\, KN$

 $A_w = A - 2 \times b \times t_f = 16.4 - (2 \times 7.3 \times 0.69) = 6.32 \ cm^2$

 $0.5 \ A_W \times \frac{f_y}{\gamma_{M1}} = 0.5 \times 6.32 \times \frac{23,5}{1.1} = 67.50 \text{KN}$

 \rightarrow L'incidence de l'effort normal sur le moment résistant peut être négligée.

Pas de réduction des moments de résistance plastique :

 $M_{Ny, Rd} = M_{ply, Rd}$

 $M_{\text{Nz, Rd}} = M_{\text{plz, Rd}}$

La formule de vérification est la suivante :

$$\left[\frac{7.49}{20.71}\right]^2 + \left[\frac{0.374}{4.51}\right]^1 = 0.213 \le \mathbf{1} \qquad \text{Vérifiée.}$$

b) Incidence de l'effort tranchant

Si : $V_{Sd} \leq 0.5V_{pl, Rd} \rightarrow Il$ n'y a pas d'interaction entre le moment résistant et l'effort tranchant. A mi- travée la valeur du moment fléchissant est maximale et la valeur de l'effort tranchant est nulle, donc il n'y a pas d'interaction entre le moment fléchissant et l'effort tranchant.

VI.3.2. Vérification de l'élément aux instabilités (déversement)

La Semelle supérieure :

- La semelle supérieure qui est comprimée sous l'action des charges verticales descendantes est susceptible de déverser, vu qu'elle est fixée à la toiture il n'y a donc pas risque de déversement.

La semelle inférieure :

- qui est comprimée sous l'action du vent du soulèvement est susceptible de déverser de moment quelle est libre tout au long de semelle inferieure.

Combinaisons à l'ELU

 $\label{eq:qu} \begin{array}{l} q_u = G + 1.5 W_s = -0.20 \text{KN} \\ q_{uz, \; Sd} = G \; \cos \; \alpha + 1.5 W_{s} = .0.195 \; \text{KN} \\ q_{uy, \; Sd} = 1.35 \text{G} \; \sin \; \alpha = 0.098 \; \text{KN} \\ N_{Sd} = 1.5 \text{V} = 1.5 \text{F}_{2} = 19.228 \; \text{KN} \\ \text{Avec}: \\ G = 0.372 \; \text{KN/m} \qquad \mbox{ $\mbox{ $\mbox{charge permanente $\mbox{$\mbox{w}$}}$} \\ W = -0.113 \; \text{KN/m} \qquad \mbox{ $\mbox{$\mbox{w}$}$ event de soulèvement $\mbox{$\mbox{\mbox{w}}$} \end{array}$

V = F2 = 12.819 KN « effort de compression du vent revenant à la panne intermédiaire »

Charge de flexion :

 $q_{uz,\;Sd} = G\;cos\;\alpha + 1.5W_s = 0.372cos\;11.30^\circ - 1.5\times 0.113 = 0.195\;KN\;/m$

$$M_{y,Sd} = \frac{q_{z,Sd} \times l^2}{8} = \frac{0.195 \times 6.34^2}{8} = 0.979 \text{ KN. m}$$

 $q_{uy,\;Sd}$ = 1.35G sin α = 1.35 \times 0.372 \times sin11.30° = 0.098 KN/m

$$M_{z,Sd} = \frac{q_{y,Sd} \times (l/2)^2}{8} = \frac{0.098 \times (6.34/2)^2}{8} = 0.123 \text{ KN. m}$$

Charge de compression

 $N_{Sd} = 1.5V = 1.5F_2 = 1.5 \times 12.819 = 19.228 \ \text{KN}$

Vérification au flambement

Flexion composée avec risque du flambement :

$$\frac{N_{Sd}}{\chi_{\min}\binom{A.f_y}{\gamma_{M1}}} + \frac{K_y.M_{y,Sd}}{Mply,Rd} + \frac{K_z.M_{z,Sd}}{Mplz,Rd} \le 1 \qquad EC03. (5.52.Art.5.5.4.)$$

Avec :

$$\begin{split} K_{y,z} &= 1 - \frac{\mu_{y,z} \times N_{Sd}}{\chi_{y,z} \times A \times f_{y}} & K_{y,z} \leq 1.5 \\ \mu_{y,z} &= \bar{\lambda}_{y,z} \times \left(2\beta_{M,y,z} - 4\right) + \left(\frac{W_{\text{ply},z} - W_{\text{ely},z}}{W_{\text{ely},z}}\right) & \mu_{y,z} \leq 0.90 \end{split}$$

 $\beta_{M,v,z}$: Sont les facteurs de moment uniforme équivalent pour le flambement par flexion

On a:

Calcul de coefficient de réduction xmin

Avec : $\chi_{min} = min(\chi_y; \chi_z)$

a).1- Flambement par rapport à l'axe fort y-y :

$$\begin{split} \chi_{y} &= \frac{1}{\phi_{y} + \left[\phi_{y}^{2} - \bar{\lambda}_{y}^{2}\right]^{0.5}} \quad \text{et} \quad \phi_{y} = 0.5 \left[1 + \alpha_{y} \left(\bar{\lambda}_{y} - 0.2\right) + \bar{\lambda}_{y}^{2}\right] \text{ , } \quad \alpha_{y} = 0.21 \\ \bar{\lambda}_{y} &= \left(\frac{\lambda_{y}}{\lambda_{1}}\right) \times [\beta_{A}]^{0.5} \end{split}$$

Avec :

 $\beta_A = 1$ pour les sections de classe 1 et 2

$$\lambda_1 = \pi \left[\frac{E}{f_y} \right]^{0.5} = \pi \left[\frac{2.1 \times 10^6}{2350} \right]^{0.5} = 93.9$$

 α : facteur d'imperfection correspondant à la courbe de flambement appropriée, donné par le tableau 5.5.1 de l'**EC3**.

$$\lambda_{y} = \frac{L_{y}}{i_{y}} = \frac{634}{5.74} = 110.45$$

$$\bar{\lambda}_{y} = \frac{\lambda_{y}}{\lambda_{1}} = \frac{110.45}{93.9} = 1.176$$

$$\begin{cases} \frac{h}{b} = \frac{140}{73} = 1.91 > 0.2 \\ \lambda_{f} = 7.3 \text{ mm} < 40 \\ \text{Axe de flambement } y - y \end{cases} \rightarrow \text{ La courbe (a)}$$

 $\left\{ \begin{array}{ll} \text{La courbe (a)} \\ \bar{\lambda}_y = 1.176 \end{array} \rightarrow \quad \phi_y = 1.293 \qquad \quad \chi_y = 0.546 \end{array} \right.$

a).2- Flambement par rapport à l'axe faible z-z :

$$\begin{split} \chi_z &= \frac{1}{\phi_z + \left[\phi_z^2 - \bar{\lambda}_z^2\right]^{0.5}} \quad \text{et} \quad \phi_z = 0.5 \left[1 + \alpha_z (\bar{\lambda}_z - 0.2) + \bar{\lambda}_z^2\right] \ , \ \alpha_z = 0.34 \\ \lambda_z &= \frac{L_z}{i_z} = \frac{317}{1.65} = 192.12 \\ \bar{\lambda}_z &= \frac{\lambda_z}{\lambda_1} = \frac{192.12}{93.9} = 2.04 \\ \begin{cases} \frac{h}{b} = \frac{140}{73} = 1.91 > 0.2 \\ t_f = 7.6 \text{mm} < 40 \\ \text{Axe de flambement } z - z \end{cases} \rightarrow \text{ La courbe (b)} \end{split}$$

2020/2021

Chapitre IV

$$\begin{cases} \text{La courbe (a)} \\ \bar{\lambda}_{z} = 2.04 \end{cases} \rightarrow \phi_{z} = 2.89 \ \chi_{z} = 0.202 \end{cases}$$

Xmin= min $(\chi_y; \chi_z) = (0.546; 0.202) = 0.202$

$$\boldsymbol{\mu}_{y} = \bar{\boldsymbol{\lambda}}_{y} \times \left(2\boldsymbol{\beta}_{M,y} - 4 \right) + \left(\frac{\boldsymbol{W}_{\text{pl},y} - \boldsymbol{W}_{\text{el},y}}{\boldsymbol{W}_{\text{el},y}} \right)$$

Pour une poutre simplement appuyée avec une charge uniformément répartie :

$$\begin{split} \beta_{M,y} &= 1.3 \\ \mu_{y} &= 1.17 \times (2 \times 1.3 - 4) + \left(\frac{88 - 77}{77}\right) = -1.49 < 0.90 \quad (condition \ v\acute{e}rifi\acute{e}) \\ K_{y,z} &= 1 - \frac{\mu_{y,z} \times N_{Sd}}{\chi_{y,z} \times A \times f_{y}} \\ K_{y} &= 1 - \frac{1.49 \times 19.228}{0.546 \times 16.4 \times 23.5} = 0.87 < 1.5 \quad (condition \ v\acute{e}rifi\acute{e}) \\ \mu_{z} &= 2.04 \times (2 \times 1.3 - 4) + \left(\frac{19 - 12}{12}\right) = -2.272 < 0.90 \quad (condition \ v\acute{e}rifi\acute{e}) \\ K_{z} &= 1 - \frac{2.272 \times 19.228}{0.202 \times 16.4 \times 23.5} = 0.43 < 1.5 \quad (condition \ v\acute{e}rifi\acute{e}) \\ \frac{N_{Sd}}{\chi_{min} \binom{A.f_{y}}{\gamma_{M1}}} + \frac{K_{y}.M_{y,Sd}}{Mply,Rd} + \frac{K_{z}.M_{z,Sd}}{Mplz,Rd} \leq 1 \end{split}$$

 $\frac{17.293}{0.202x385.4} + \frac{0.87x7.64}{20.17} + \frac{0.43 \times 0.374}{4.51} = 0.586 \le 1 \qquad (condition \ v\acute{e}rifi\acute{e})$

b) Vérification au déversement :

$$\operatorname{avec}\frac{N_{Sd}}{\chi_{Z} \cdot \binom{A.f_{y}}{\gamma_{M1}}} + \frac{K_{LT} \cdot M_{y,Sd}}{\chi_{LT} M ply,Rd} + \frac{K_{Z} \cdot M_{z,Sd}}{M plz,Rd} \le 1 \quad ECO3(5.52Art.5.5.4)$$

avec $K_{LT} = 1 - \frac{\mu_{LT} \times N_{Sd}}{\chi_Z \times A \times f_y}$ dont $K_{LT} \le 1$ et $\mu_{LT} = 0.15 X \bar{\lambda}_Z X \beta_{MLT} - 0.15$ mais $\mu_{LT} \le 90$

 $\beta_{\scriptscriptstyle MLT}:$ facteur de moment uniforme equivalent pour le déversment

$$\chi_{LT} = \frac{1}{\phi_{LT} + \left[\phi_{LT}^2 - \bar{\lambda}_{LT}^2\right]^{0.5}} \quad \text{et} \ \phi_{LT} = 0.5 \left[1 + \alpha_{LT} (\bar{\lambda}_{LT} - 0.2) + \bar{\lambda}_{LT}^2\right]$$

Chapitre IV

$$\begin{split} \chi_{LT} &= 1/(0.54 + [0.54^2 - 0.26^2]^{\wedge}(0.5) = 0.98 \text{ et} \\ \varphi_{LT} &= 0.5[\mathbf{1} + 0.21(0.26 - 0.2) + 0.26^2] = 0.54 \\ \bar{\lambda}_{LT} &= \left(\frac{\lambda_{LT}}{\lambda_1}\right) \times [\boldsymbol{\beta}_A]^{0.5} \text{ et} \quad \bar{\lambda}_{LT} = 0.26 \end{split}$$

 α_{LT} : Facteur d'imperfection pour le déversement.

 α_{LT} =0.21 pour les sections laminées

$\beta_A = 1$ pour les sections de classe 1 et 2

 λ_{LT} : Elancement de l'element vis à vis du déversemnt(profilés laminés I OU H)

$$\lambda_{l,t} = \frac{\frac{lz}{lz}}{(C1)^{0.5} \left[1 + \frac{1}{20} \times \left(\frac{lz}{\frac{lz}{lf}} \right)^2 \right]^{0.5}} \qquad \lambda_{LT} = \left(\frac{\lambda_{l,t}}{\lambda_1} \right) X[\beta_A]^{0.5} \quad \sqrt{\beta w} = 1 \quad \text{IPE 140 de classe 1}$$
$$\lambda_{l,t} = \frac{\frac{45}{1.65}}{(1.132)^{0.5} \left[1 + \frac{1}{20} \times \left(\frac{\frac{45}{1.65}}{\frac{140}{6.9}} \right)^2 \right]^{0.5}} = 24.54 \quad ET \sqrt{\beta w} = 1 \quad \text{IPE 140 de classe 1}$$

a) Calcul du coefficient K_{LT}

$$\mu_{LT} = 0.15 X \overline{\lambda}_Z X \beta_{MLT} - 0.15$$

 $\beta_{MLT} = 1.3$ pour une poutre simplement appuyée avec une charge repartie.

 $\mu_{LT}{=}0.\;15X2.04X1.3{-}0.15\;{=}0.24 \leq {\bm 0}.\,{\bm 9}\;\;(\mbox{condition vérifiée})$

 $K_{LT} = 1 - \frac{0.24 \times 17.293}{0.202 \times 16.9 \times 23.5} = 0.92 \le 1$ (condition vérifiée)

$$\frac{17.293}{0.202X385.4} + \frac{0.92X7.64}{0.98X20.17} + \frac{0.43X0.374}{4.51} = 0.61 \le 1$$

Donc le profilé IPE 140 convient comme panne de toiture

VI.4.Contreventement vertical du long pan

Les palées de stabilités sont destinées à assurer la stabilité des parois ou files d'ossature, vis des efforts horizontaux qui peuvent les solliciter : Vent

- Effets des séismes.
- Flambement et déversement.
- Force de frottements

• Le dimensionnement s'effectue en négligent les diagonales comprimées en admettant qu'elles flambent, dans ce cas tous les efforts sont repris par les diagonales tendues.

VI.4.1.Dimensionnement de la pale de stabilité d'intermédiaire

Evaluation des efforts de traction dans les diagonales tendues se faite par la méthode des coupures :

On a:

Figure VI.3:Schéma de stabilité verticale.

VI.4.1.1. Calcul de diagonale D2

tg $\beta = 6/6.34 = 0.94 \Longrightarrow \beta = 43.42^{\circ}$ et Nsd $=\frac{R-F}{\cos\alpha} = \frac{32-12.31}{\cos43.42} = 27.10 \text{ KN}$

VI.4.1.2 .Section des diagonales

Il faut vérifier que :

$$A \ge \frac{N_{Sd}}{f_y} \cdot \gamma_{M0}$$

п

 $N_{Sd} = 1.5x27.10 = 40.66 \text{ KN}$

$$A \ge \frac{40.66}{23.5}.\, 1 = 0.07 \text{cm}^2$$

 \rightarrow Donc on adopte un double cornier dos à dos $\perp 60 \times 60 \times 6$ de A= 6.88 cm²

VI.4.2.Vérification à la résistance ultime de la section :

Condition de résistance : $N_{Sd} = 40.66 KN \le N_{u,Rd} = \frac{0.9A_{net} f_u}{\gamma_{M0}}$

Soit une cornière isolée de $(60 \times 60 \times 6)$ avec un boulon de 16mm.et trous de 18mm

Section nette : Anet = $A - (e \times d) = 6.88 - (0.6 \times 1.8) = 5.8 cm^2$

$$N_{u,Rd} = \frac{0.9 \times 5.8 \times 36}{1.25} = 150.33 \text{ KN}$$

 $N_{Sd}=~40.66 \text{KN} \leq N_{u,Rd}=150.33~\text{KN}$ (Condition Vérifiée.)

Donc la cornière $L(60 \times 60 \times 6)$ convient pour les diagonales de la poutre au vent.

$$= R = 32KN$$

$$M_{ply,Rd} = \frac{w_{ply} \times f_y}{\gamma_{M0}} = \frac{166 \times 235}{1} = 39.01 \text{ KN/m.}$$

$$N_{pl,Rd} = \frac{A \times f_y}{\gamma_{M1}} = \frac{24 \times 23.5}{1.1} = 512.72 \text{ KN/m.}$$

$$\begin{cases} \frac{h}{b} = \frac{180}{91} = 1.97 > 0.2 \\ t_f = 8mm < 40 \\ \text{Axe de flambement Y - Y} \end{cases} \rightarrow \text{ La courbe (b)}$$

$$(\text{ La courbe (a)} = 2.00 \text{ Jm})$$

$$\begin{cases} \text{La courbe (a)} \\ \bar{\lambda}_{y} = 2.04 \end{cases} \rightarrow \phi_{y} = 2.89 \ \chi_{y} = 0.202 \end{cases}$$

$$\mu_{y} = \bar{\lambda}_{y} \times \left(2\beta_{M,y} - 4\right) + \left(\frac{W_{\text{pl},y} - W_{\text{el},y}}{W_{\text{el},y}}\right)$$

Pour une poutre simplement appuyée avec une charge uniformément repartie:

$$\beta_{M,y} = 1.3$$

 $\mu_y = 2.04 \times (2 \times 1.3 - 4) + \left(\frac{166 - 146}{146}\right) = -2.72 < 0.90$

$$\begin{split} K_{y,z} &= 1 - \frac{\mu_{y,z} \times N_{Sd}}{\chi_{y,z} \times A \times f_{y}} \\ K_{y} &= 1 - \frac{2.72 \times 32}{0.202 \times 24 \times 23.5} = 023 < 1.5 \quad (\text{Condition Vérifiée.}). \end{split}$$

VI.5 Conclusion

Les éléments étudiés dans ce chapitre servent à stabiliser la structure dans le sens longitudinal contre les différentes actions de la nature , notamment les actions dues au vent .Dans l'autre sens la stabilité est assurée par le portique auto stable ductile qu'on étudiera dans le chapitre suivant.

Chapitre VII Etude des portiques

VII.1. Introduction

Les portiques sont les éléments principaux pour une structure métallique, ils supportent les différents efforts agissants sur la structure qui sont de nature permanente, variable ou accidentelle.

L'étude de présent hangar de stockage est faite par le logiciel de calcul RSA (Robot 2018).

Charges agissantes sur le portique le plus sollicité :

VII.2.Charges permanentes

- Poids propre du portique
- Poids de couverture et ses éléments secondaires représentés comme des charges linéaires uniformément répartis sur les traverses et d'autres charges concentriques sur les poteaux
 - Poids des pannes, couverture et accessoires de pose

• Poids des lisses de bardage, de bardage, poutres de pont roulant, sablière.....etc. agissants sur les poteaux de rive.

• Poids des poutres de chemin de roulement.....etc.

VII.3.Charges variables

- Charges climatiques (vent et neige).
- Charges d'exploitation.

VII.4. Dimensionnement des portiques

La détermination des sollicitations globales affectant les portiques exige un calcul par étapes de toutes les sollicitations élémentaires, engendrées par les divers actions : charge permanentes, charges d'exploitation, neige, vent. Il s'agira ensuite de repérer les combinaisons les plus défavorables, pour déterminer les sections des profilés adéquates.

VII.5.Modélisation de la structure sur Robot

La modélisation parfaite d'une structure se manifeste par le dessin correct des profilés constituant la structure, la figure ci-dessous présente une modélisation sur Robot Structural du portique à dimensionner.

Figure VII.1 : Modèle de la structure sur RSA.

L'analyse de la structure par le programme AutoDesk RSA (Robot Structural Analysis) passe généralement par les étapes suivantes :

1-Définition des données de la structure:

- La langue et les unités de mesures utilisées.
- Les normes de calculs structurels: statique, non linéaire ou dynamiques.
- Les Paramètres de calcul numérique d'éléments finis.
- Les matériaux et sections, types de charges et charges.
- La géométrie de la structure en barres, poteaux et poutres.
- Les cas de charges et les charges appliquées.

2- Lancement de l'analyse numérique et contrôle des efforts et des déplacements de la structure.

3- Dimensionnement des barres en combinaisons ELU et vérification de la flèche en ELS.

Remarque :

Le système RSA repose sur une structure de bureaux, ce qui facilite la logique d'analyse, les sections de barres peuvent être regroupé en familles ainsi que les combinaisons de charge de calcul.

Dans le cas de notre étude, parmi les fenêtres les plus importantes de l'application :

* Fenêtre de lancement de l'analyse :

Autodesk Robot Struct	tural Analysis P	rofessio	nal - Calculs		_	\sim
31-08-2021			CALCULS STATIQUES			18:36:2
SOLVEUR 'SPARSE'						
PHASE DE CALCUL						
Renumérotation						00:00:0
Solution						00:00:0
Etape de la solution						00:00:0
Cas	58					
Manager da ante da						
18:36:22 Début de la	vérification d	de la stru	ucture			
Nombre d'erreurs: 0						
Nombre d'avertissements	a: 0					
18:36:23 Fin de la vé	rification de la	a structu	Jre			
18:36:23 Début de l'a	analyse					
1						
Statistique			Ressources		Utilisé	
Statistique		224	Ressources Mémoire: 884.4	84	Utilisé 0.000	
Statistique Nombre de noeuds Nombre d'éléments	:	234	Ressources Mémoire: 884.4 Disque: 63918	84 3.543	Utilisé 0.000 2.948	
Statistique Nombre de noeuds Nombre d'éléments Nombre d'équations	:	234 483 1224	Ressources Mémoire: 884.4 Disque: 63918	84 9.543	Utilisé 0.000 2.948	
Statistique Nombre de noeuds Nombre d'éléments Nombre d'équations Largeur du front	: : : : : : : : : : : : : : : : : : : :	234 483 1224	Ressources Mémoire: 884.4 Disque: 63918 Cas Début des calculs:	84 543 18::	Utilisé 0.000 2.948 1 36:23	
Statistique Nombre de noeuds Nombre d'éléments Nombre d'équations Largeur du front Initiale	: : : : : : : : : : : : : : : : : : : :	234 483 1224	Ressources Mémoire: 884.4 Disque: 63918 Cas Début des calculs: Durée estimée:	84 3.543 18:3	Utilisé 0.000 2.948 36:23	
Statistique Nombre de noeuds Nombre d'éléments Nombre d'équations Largeur du front Initiale Optimisée	:	234 483 1224	Ressources Mémoire: 884.4 Disque: 63918 Cas Début des calculs: Durée estimée:	84 3.543 18::	Utilisé 0.000 2.948 36:23	
Statistique Nombre de noeuds Nombre d'éléments Nombre d'équations Largeur du front Initiale Optimisée Nombre de blocs:	: : : : : : : : : : : : : : : : : : : :	234 483 1224	Ressources Mémoire: 884.4 Disque: 63918 Cas Début des calculs: Durée estimée: Priorité des calculs:	84 3.543 18:: Norr	Utilisé 0.000 2.948 36:23	

* Fenêtres de Dimensionnement et de vérification :

2 Calculs - NF EN 1993-1:200	5/NA:20 — 🗆 🛛	📕 Calculs - NF EN 1993-1:200	5/NA:20 —	
Options de vérification		Options de vérification		
Vérification des pièces:	1A224 226A231 433A4 Liste	○ Vérification des pièces:	1A224 226A231 433A4	Liste
• Vérification des familles:	1A9 Liste	O Vérification des familles:	1A9	Liste
O Dimens. des familles:	1A9 Liste	Dimens. des familles:	1A9	Liste
Optimisation	Options	Optimisation	Options	
Etats limites		Etats limites		
ELU:	1A20 22A58P2 59 Liste	ELU:	1A20 22A58P2 59	Liste
ELS:	1A18 20A52P8 22A54P Liste	ELS:	1A18 20A52P8 22A54P	Liste
Archive de calculs		Archive de calculs		
Enregistrer résultats de calculs	Stockage des résultats	Enregistrer résultats de calculs	Stockage des résultats	
OK Paramétrage	Calculer Aide	OK Paramétrage	Calculer	Aide

- * Fenêtre des résultats de dimensionnements :
- 1. les poteaux

ELU:

Pièce	Profil		Matériau	Lay	Laz	Ratio	Cas
Famille : 1 P							
	1	IPE 360		27.28	202.76	1.14	
10 Poteau ext_10	K	IPE 400	ACIER E24	24.66	194.43	0.88	19 ELU /139/
	Ŧ	IPE 450		22.08	186.49	0.68	
Famille : 2 P	DTE	AUX INTER					
20. Determinter	1	IPE 300		48.15	179.12	0.99	
29 Poteau inter 29	o K	IPE 330	ACIER E24	43.77	169.11	0.80	19 ELU /343/
_~~	Ŧ	IPE 360		40.12	158.41	0.64	

ELS:

Pièce	Profil	Matériau	Ratio(uy	Cas (uy)	Ratio(uz	Cas (uz)	Ratio(vx)	Cas (vx)	Ratio(vy)	Cas (vy)
Famille : 1 PC	TEAUX EXT									
28 Poteau ext_28	PE450	ACER E24	•		•		0.21	25 ELS /47/	0.00	3 Vent GID sur.(+)
Famille : 2 PC	TEAUX INTER									
9 Poteau inter_9	🖉 (PE450	ACER E24			•		0.04	25 ELS /83/	0.00	5 Vent DIG sur.(+)

Donc, on a opté pour un IPE450 comme section de poteau.

2. Les traverses

ELU:

Famille : 4 POU	TRES ARB					
	IPE 500		39.94	189.48	1.25	
34 Poutre arb_34	PE 550	ACIER E24	36.51	183.14	0.97	19 ELU /343/
	IPE 600		33.58	175.07	0.76	

ELS:

Pièce	Profil	Matériau	Ratio(uy	Cas (uy)	Ratio(uz	Cas (uz)
Famille : 4 P(UTRES ARB					
31 Poutre arb_31	K IPE 550	ACIER E24	<mark>0.00</mark>	25 ELS /41/	0.09	25 ELS /41/

Donc, on a opté pour un IPE550.

VII.6. Justification des poteaux

.

Résultats - norme - NF EN 19	93-1:2005/NA:2007/AC:2009)	-	□ X
Auto IPE450 V	Famille: 1 POTEAUX EXT Pièce: 10 Poteau ext_10 Point / Coordonnée: 1 / 2 Cas de charge: 19 E	x = 0.00 L = 0.00 m ELU /139/ 1*1.35 + 2*1.35 + 5	Profil correct	OK
Résultats simplifiés Résultats dé	taillés			Changer
FORCES N,Ed = 163.28 kN Nc,Rd = 2322.27 kN Nb,Rd = 492.62 kN	My,Ed = -151.36 kN*m My,Ed,max = 207.76 kN*m My,c,Rd = 399.92 kN*m MN,y,Rd = 399.92 kN*m	Mz,Ed = 4.85 kN*m Mz,Ed,max = 4.85 kN*m Mz,c,Rd = 64.95 kN*m MN,z,Rd = 64.95 kN*m	Vy,Ed = 17.72 kN Vy,T,Rd = 849.85 kN Vz,Ed = 59.26 kN Vz,T,Rd = 685.81 kN Tt,Ed = 0.14 kN*m Classe de la section = 1	Efforts Détaillée
			XLT = 1.00	
FLAMBEMENT y Ly = 6.00 m Lcr, y = 4.08 m Lamy = 22.08	Lam_y = 0.24 Xy = 0.99 kyy = 1.06	FLAMBEMENT z Lz = 6.00 m Lcr,z = 7.68 m Lamz = 186.49	Lam_z = 1.99 Xz = 0.21 kyz = 0.77	Note de calcul Paramètres Aide
CONTROLE DE LA SECTION (My,Ed/MN,y,Rd)^ 2.00 + (Mz Vz,Ed/Vz,T,Rd = 0.09 < 1.00	r,Ed/MN,z,Rd)^1.00 = 0.22 < (6.2.6-7)	1.00 (6.2.9.1.(6))		
CONTROLE DE LA STABILITE D Lamy = 22.08 < Lam,max = 2 N,Ed/(Xy [®] N,Rk/gM1) + kyy [®] M	E LA BARRE 10.00 Lamz = 186.49 < La y,Ed,max/(XLT*My,Rk/gM1) +	am,max = 210.00 STABLE kyz*Mz,Ed,max/(Mz,Rk/gM1) =	0.68 < 1.00 (6.3.3.(4))	

VII.7. Justification des traverses

🗲 Résultats - norme - NF EN 19	993-1:2005/NA:2007/AC:2009		_	X	
Auto IPE 550 V	Famille: 4 POUTRES ARB Pièce: 34 Poutre arb_34 Point / Coordonnée: 1 / 3 Cas de charge: 19 E	x = 0.00 L = 0.00 m ELU /343/ 1*1.35 + 2*1.35 +	Profil correct	OK	
Résultats simplifiés Résultats de	étaillés			Changer	
FORCES					
N,Ed = 112.93 kN Nc,Rd = 3158.87 kN Nb,Rd = 3158.87 kN	My,Ed = -282.15 kN*m My,Ed,max = -282.15 kN*m My,c,Rd = 654.95 kN*m MN,y,Rd = 654.95 kN*m Mb,Rd = 306.95 kN*m	Mz,Ed = -1.42 kN*m Mz,Ed,max = -1.42 kN*m Mz,c,Rd = 94.13 kN*m MN,z,Rd = 94.13 kN*m	Vy,Ed = -0.62 kN Vy,T,Rd = 1102.75 kN Vz,Ed = 100.47 kN Vz,T,Rd = 972.07 kN Tt,Ed = 0.36 kN*m Classe de la section = 1	Efforts Détaillée	
DEVERSEMENT		a 17	WIT 0.45		
	Mcr = 393.90 kN*m	Courbe,LT -	XLT = 0.46		
LCr,10W=8.16	m Lam_LI = 1.29	n,LI = 1.4/	XL1,mod = 0.47		
FLAMBEMENT y		FLAMBEMENT Z		Note de calcul Paramètres	
	kyy = 1.00		kzz = 1.00	Aide	
CONTROLE DE LA SECTION (My,Ed/MN,y,Rd)^ 2.00 + (Mz,Ed/MN,z,Rd)^1.00 = 0.20 < 1.00 (6.2.9.1.(6)) Vz,Ed/Vz,T,Rd = 0.10 < 1.00 (6.2.6-7)					
CONTROLE DE LA STABILITE D	CONTROLE DE LA STABILITE DE LA BARRE				
N,Ed/(Xy*N,Rk/gM1) + kyy*My,Ed,max/(XLT*My,Rk/gM1) + kyz*Mz,Ed,max/(Mz,Rk/gM1) = 0.97 < 1.00 (6.3.3.(4))					

VII.8.Conclusion :

Ce chapitre nous a permis de vérifier et dimensionner tous les éléments de de la structure

(poutres,poteaux).

Chapitre VIII Calcul des assemblages

VIII.1 Introduction

Un assemblage est un dispositif qui permet de réunir et de solidariser plusieurs pièces entre elles, en assurant la transmission des sollicitations entre les pièces

VIII.2. Assemblage traverse IPE 550 - traverse IPE 550

•L'assemblage traverse – traverse est réalisé à l'aide d'une platine boulonnée.

Si la portée du portique ne dépasse pas certaines limites pour le transport (environ

16m), l'assemblage du faitage peut être réalisé en usine, hors chantier, permettant ainsi des économies.

•L'assemblage est sollicité par un moment fléchissant, effort tranchant et un effort normal.

Figure VIII.1 : Représentation de l'assemblage Traverse – Traverse

L'effort sollicitant : V_{sd}= 19,61 KN N_{sd}= 61,41 KN M_{sd}= 147,42 KN.m Platine : (720 x 210 x 25)

VIII.2.1 Détermination des efforts dans les boulons

On choisit des boulons de classe 8.8

Nombre de boulons = 12

Traverse IPE 550 avec $d_{1=}$ 591,5mm ; $d_{2=}$ 501,5mm ; $d_{3=}$ 381,5mm ; $d_{4=}$ 291,5mm ; $d_{5=}$

201,5 mm

$$\sum di^2 = 0,872m^2$$

$$N_i = \frac{Msd x di}{\Sigma di^2}$$

$$N_1 = \frac{147,42 x 0,591}{0,872} = 99,91 \text{ KN}$$

$$N_2 = \frac{147.42x 0.5}{0,056} = 84,52 \text{ KN}$$

$$N_3 = \frac{147,42 x 0,381}{0,872} = 73,86 \text{ KN}$$

$$N_4 = \frac{147,42 x 0,291}{0,872} = 62,22 \text{ KN}$$

$$N_5 = \frac{147,42 x 0,201}{0,872} = 33,98 \text{ KN}$$

VIII.2.2 Dimensionnement des boulons

Il faut vérifier que N1 $\leq n \times Fp$ avec $Fp = 0,7 \times fub \times A_s$ As $\geq \frac{N_1}{0,7 \times fub \times n} = \frac{99,91}{0,7 \times 800 \times 2} = 98,20 \text{ mm}^2$ On choisit un boulon M 18 classe 8.8 As = 192 mm², A = 254mm², d_0 = 20 mm

• Disposition constructive:

Distance entre axe des boulons :

$$P_1 \ge 2,2 d_0$$

; $P_2 \ge 3 d_0$

 $P_1 \ge 2,2 \ \times \ 20 \ = \ 44 \ mm \qquad ; P_2 \ge 3 \ \times \ 20 \ = \ 60 \ mm$

Pince longitudinale :	• Pince transversale :		
$e_1 \ge 1,2d_0$	$e_1 \ge 1,5d_0$		
$e_1 \ge 1,2 \times 20 = 24 mm$	$e_1 \ge 1,2 \times 20 = 30 \ mm$		
On prend :	On prend :		
$e_1 = 120 \text{ mm}$	$e_2 = 70 \text{ mm}$		
$P_1 = 90 \ mm$	$P_2 = 70 \ mm$		

VIII.2.3 Moment résistant effectif de l'assemblage

$$Mrd = \frac{F_{p \times \Sigma_{di}^{2}}}{d_{1}} > M_{sd}$$

$$F_{p} = 0,7 \times fub \times A_{s} \Rightarrow F_{p} = 0,7 \times 800 \times 192 \times 10^{-3} = 107,52 KN$$
Et 107,52 x 2 = 215KN pour chaque ranger.
$$M_{rd} = \frac{215 \times 0.872}{0,591} = 317,22 KN > Msd = 147,42 KN \Rightarrow \text{Condition vérifiée}$$

VIII.2.4 Résistance d'un boulon à l'intérieur cisaillement – traction :

Assemblages résistant au glissement à l'état limite ultime :

$$\mathbf{F}_{s. Rd} = \frac{Ks.n.\mu(F_p - 0.8.F_{t.sd})}{\gamma_{Ms}}$$

Avec :

 μ = coefficient de frottement des surfaces assemblées.

 $K_s = 1$ si les trous sont normaux.

n = nombre d'interfaces de frottement.

 $F_{t,sd} = \frac{F_p}{2} = \frac{107,52}{2} = 53,76 \text{ KN}$

• Effort de cisaillement sollicitant par boulon.

 $F_{v,sd} = \frac{V_{sd}}{n} = \frac{19,61}{12} = 1,63 \ KN$

• Effort résistant de l'interaction cisaillement - traction sollicitant :

→
$$F_{s,rd} = \frac{1 \times 1 \times 0.3 \times (107,52 - (0.8 \times 53,76))}{1,1} = 17,59 KN$$

 $F_{v,sd}$ =1.63KN< $F_{s,rd}$ =17.59KN \rightarrow la condition vérifiée.

VIII.2.5 Vérification au poinçonnement

Il faut vérifier que :

 $B_{prd=} 0.6 \times \pi \times d_m \times t_p \mathbf{x}_{\gamma_{mb}}^{fu}$

Vérification au poinçonnement :

Il faut vérifier que :

 $B_{prd} > F_{t,sd}$

 t_p : Épaisseur de la plaque sous la tète du boulon ou de l'écrou

 d_m : Diamètre moyen de la tète du boulon ou de l'écrou (plus petite des deux valeurs)

 $B_{prd=} 0.6 \times \pi \times 29.1 \times 20x \frac{36}{1.25} = 315.78 NN$

Donc $B_{prd} > F_{t,sd} \rightarrow$ la condition vérifiée.

VIII.3 Assemblages des pies de poteaux

Les bases des poteaux et les tiges d'ancrage sont des éléments de continuité qui assurent la transmission des efforts développées dans le poteau de la superstructure aux fondations, se sont des dispositifs de liaisons.

Ces derniers sont constitués d'une plaque d'assise appelée platine assurant la réduction de la pression dans le béton, soudée au poteau reposant sur la fondation et fixée par écrous aux tiges d'ancrage qui sont noyées dans le béton.

Figure VIII.2. Pieds de poteau encastré.

Poteau IPE 450 Platine : 900X380X30 Boulon M30 de classe 4.8 Mmax=158.29KN.m Nmax =324.54KN

Figure VIII.3. Vue des pieds de poteau encastré

Figure VIII.4. Dispositions des tiges d'ancrages

• Disposition constructive:

Distance entre axe des boulons : D > 2.2 d

P₁≥ 2,2 d_0

; $P_2 \ge 3 d_0$

 $P_1 \ge 2,2 \times 33 = 72.6 \ mm$; $P_2 \ge 3 \times 33 = 99 \ mm$

• Pince longitudinale :

 $e_1 \ge 1,2d_0$ $e_1 \ge 1,2 \times 33 = 39.6 mm$ On prend : $e_1 = 150 mm$ • Pince transversale : $e_1 \ge 1,5d_0$ $e_1 \ge 1,2 \times 33 = 39.6 mm$ On prend : $e_2 = 140 mm$
$P_1 = 600 \text{ mm}$

 $P_2=100\ mm$

Le moment de 158.29KN.m est équivalent à un effort N excentré de :

$$e = \frac{M}{N} = \frac{158.29}{324.54} = 0.48m$$
$$D = \frac{900}{2} = 450mm < 480mm$$

On obtient une distribution triangulaire des contraintes.

• Effort de traction (arrachement) Sollicitant les boulons d'ancrages de gauche est : T=A. f_y

$$2\emptyset 30 \Rightarrow A=11.22$$
cm2

• L'effort de compression sollicitant le béton est :

$$C = \frac{1}{2}$$
. l.h'. f_{ck} Située à h'/3 du bord de la plaque

Calcul de h' $h^{,3} + 3(1-h)h^{,2} + 90.A.\frac{l}{b}h' - 90.A.\frac{l}{b}h = 0$ $h^{,3} + 45h^{,2} + 2391.63h' - 179052.63 = 0$ Cette équation de troisième degré permet d'obtenir h'= 34.7cm

• Vérification de la contrainte de compression du béton $f_b = \frac{2.N.L}{b.h'(h-h'/3)} \le f_{ck}$ $f_b = \frac{2x324,54x10^2}{38x34.7(75-34.7/3)} = \frac{70daN}{cm2} < \frac{120daN}{cm2} (condition vérifiée)$

• Vérification des goujons à la traction

$$1.25f_a = \frac{N.(l-h+\frac{h'}{3})}{A(h-h'/3)} \le f_y$$

 $f_a = \frac{324.54x(90-75+\frac{34.7}{3})}{11.22x(75-34.7/3)} = 1.25x156.55 = 195.69daN/cm2$ 195.69daN/cm2 $\leq f_{y=}2350$ daN/cm2 (condition vérifiée)

VIII.4 Détail des assemblages par robot

GENERAL

Assemblage N°:	1
Nom de l'assemblage :	Poutre - poutre
Noeud de la structure:	42
Barres de la structure:	33, 34

GEOMETRIE

GAUCHE

POUTRE

Profilé: Barre N°:			IPE 550 33
α =	-168,7	[Deg] Angle d'inclinaison
h _{bl} =	550	[mm	Hauteur de la section de la poutre
b _{fbl} =	210	[mm	Largeur de la section de la poutre
t _{wbl} =	11	[mm] Epaisseur de l'âme de la section de la poutre
t _{fbl} =	17	[mm] Epaisseur de l'aile de la section de la poutre
r _{bl} =	24	[mm	Rayon de congé de la section de la poutre
A _{bl} =	134,42	[cm ²	Aire de la section de la poutre
I _{xbl} =	67116 , 50	[cm ⁴	Moment d'inertie de la poutre
Matériau:	ACIER	R E24	
f _{yb} =	235,00 [MPa]	Résistance

DROITE

POUTRE

Profilé: Barre Nº:			IPE 550 34
α =	-11,3	[Deg]	Angle d'inclinaison
h _{br} =	550	[mm]	Hauteur de la section de la poutre
b _{fbr} =	210	[mm]	Largeur de la section de la poutre
t _{wbr} =	11	[mm]	Epaisseur de l'âme de la section de la poutre
t _{fbr} =	17	[mm]	Epaisseur de l'aile de la section de la poutre

α =	-11,3	[Deg]	Angle d'inclinaison
r _{br} =	24	[mm]	Rayon de congé de la section de la poutre
$A_{br} =$	134,42	[cm ²]	Aire de la section de la poutre
I _{xbr} =	67116 , 50	[cm4]	Moment d'inertie de la poutre
Matériau:	ACII	ER E24	
f _{yb} =	235,00	[MPa] F	Résistance

BOULONS

∟e plan de cisaillement passe par la partie NON FILETEE du boulon						
d =	18	[mm]	Diamètre du boulon			
Classe =	8.8		Classe du boulon			
F _{tRd} =	110,59	[kN]	Résistance du boulon à la traction			
n _h =	2		Nombre de colonnes des boulons			
n _v =	6		Nombre de rangéss des boulons			
h ₁ =	120	[mm]	Pince premier boulon-extrémité supérieure de la platine d'about			
Ecartement e	e _i =	70 [mm]			
Entraxe $p_i =$		90;90;	120;90;90 [mm]			

PLATINE

h _{pr} =	720	[mm]	Hauteur de	e la platine	
b _{pr} =	210	[mm]	Largeur de	e la platine	
t _{pr} =	25	[mm]	Epaisseur	de la platine	
Matériau:			ACIER E24		
f _{ypr} =			235,00	[MPa]	Résistance

JARRET INFERIEUR

w _{rd} =	210	[mm]	Largeur	de la platine	
t _{frd} =	18	[mm]	Epaisseu	ur de l'aile	
h _{rd} =	140	[mm]	Hauteur	de la platine	
t _{wrd} =	12	[mm]	Epaisseu	ur de l'âme	
$I_{rd} =$	300	[mm]	Longueu	r de la platine	
$\alpha_d =$	15,4	[Deg]	Angle d'i	nclinaison	
Matériau:		ACIH	ER E24		
f _{ybu} =		:	235,00	[MPa]	Résistance

SOUDURES D'ANGLE

a _w =	10	[mm]	Soudure âme
a _f =	13	[mm]	Soudure semelle
a _{fd} =	10	[mm]	Soudure horizontale

COEFFICIENTS DE MATERIAU

γ _{M0} =	1,00	Coefficient de sécurité partiel	[2.2]
γ _{M1} =	1,00	Coefficient de sécurité partiel	[2.2]
γ _{M2} =	1,25	Coefficient de sécurité partiel	[2.2]
γ _{M3} =	1,10	Coefficient de sécurité partiel	[2.2]

EFFORTS

Etat limite: ultime

Cas:	19: ELU /139	/ 1*1.35	+ 2*1.35 + 59*1.35 + 52*1.35 + 54*1.35
$M_{b1,Ed} =$	-147,42	[kN*m]	Moment fléchissant dans la poutre droite
$V_{b1,Ed} =$	-19,61	[kN]	Effort tranchant dans la poutre droite
$N_{b1,Ed} =$	-61,41	[kN]	Effort axial dans la poutre droite

RESULTATS

RESISTANCES DE LA POUTRE

COMPRES	SION			
A _b = 1	34,42	[cm ²]	Aire de la section	EN1993-1-1:[6.2.4]
$N_{cb,Rd} = A_b$ $N_{cb,Rd}$ =	f _{yb} /γ _{M0} 3158,8 7	[kN]	Résistance de calcul de la section à la compression	EN1993-1- 1:[6.2.4]
CISAILLE	MENT			
A _{vb} =	89,15	[cm ²]	Aire de la section au cisaillement	EN1993-1-1:[6.2.6.(3)]
$V_{cb,Rd} = A_{vb}$, (f _{yb} / √3) / ⁄	γмо		
V _{cb,Rd} =	1209 , 50	[K N]	cisaillement	EN1993-1-1:[6.2.6.(2)]
$V_{b1,Ed}$ / $V_{cb,}$	_{Rd} ≤ 1,0		0,02 < 1,00	vérifié ^{(0,02})
FLEXION -	MOMENT	PLASTIQU	E (SANS RENFORTS)	
$W_{plb} =$	2787,01	[cm ³]	Facteur plastique de la section	EN1993-1-1:[6.2.5.(2)]
$M_{b,pl,Rd} = M$ $M_{b,pl,R}$	654,	[kN*	Résistance plastique de la section à la flexion	EN1993-1-
	95	mj	(sans renforts)	1:[6.2.5.(2)]
	AU CONTA 3378.37	[cm ³]	PLAQUE AVEC L'ELEMENT ASSEMBLE Facteur plastique de la section	EN1993-1-1:[6.2.5]
$M_{ch Rd} = W_{l}$	$\int f_{\rm Vb} / \gamma_{\rm M0}$	[011]		
$M_{cb,Rd} =$	793,92	[kN*m	Résistance de calcul de la section à la flexi	ion EN1993-1-1:[6.2.5]
AILE ET A	ME EN CO	MPRESSIC	N	
M _{cb,Rd}	793,9 2	[kN*m]	Résistance de calcul de la section à la flexi	on EN1993-1- 1:[6.2.5]
h _f =	683	- [mm]	Distance entre les centres de gravité des ailes	[6.2.6.7.(1)]
$F_{c.fb.Rd} = M_{c}$	_{cb.Rd} / h _f			
$F_{c,fb,Rd} =$	1162,7	6 [kN]	Résistance de l'aile et de l'âme comprimée	s [6.2.6.7.(1)]
AME OU A	ILE DU RE		COMPRESSION - NIVEAU DE L'AILE INFERIE	URE DE LA POUTRE
Pression d	iamétrale:			
β =	11,3	[De g]	Angle entre la platine d'about et la poutre	
γ =	15,4	[De a]	Angle d'inclinaison du renfort	
b _{eff,c,wb}	283	[mm 1	Largeur efficace de l'âme à la compression	[6.2.6.2.(1)]
A _{vb} =	72,3	[cm ²	Aire de la section au cisaillement	EN1993-1-
ω =	0,90	1	Coefficient réducteur pour l'interaction avec le	[6.2.6.2.(1)]
$\sigma_{\text{com,Ed}}$	0,00	[MP	Contrainte de compression maximale dans l'âme	e [6.2.6.2.(2)]
= k -	1 00	aj	Coefficient réducteur dû aux contraintes de	[6 2 6 2 (2)]
	1,00		compression	[0.2.0.2.(2)]
$F_{c,wb,Rd1} = [F_{c,wb,Rd1} = [F_{c,wb,Rd1} = F_{c,wb,Rd1}]$	ω k _{wc} b _{eff,c,w} 1416,	_{/b} t _{wb} f _{yb} / γ _{Μ0} 77 [kN] cos(γ) / sin(γ - β)] Résistance de l'âme de la poutre	[6.2.6.2.(1)]
Flambeme	nt:			
$d_{wb} =$	468	[mm]	Hauteur de l'âme comprimée	[6.2.6.2.(1)]
$\lambda_p =$	1,02		Elancement de plaque	[6.2.6.2.(1)]
ρ =	0,79		Coefficient réducteur pour le flambement de l'élé	ment [6.2.6.2.(1)]
$F_{c,wb,Rd2} = [F_{c,wb,Rd2} = [F_{c,wb,Rd2} = [F_{c,wb,Rd2} = F_{c,wb,Rd2} = F$	ω k _{wc} ρb _{eff,} 1115,	_{c,wb} t _{wb} f _{yb} /γ 51 [kN	_{M1}] cos(γ) / sin(γ - β)] Résistance de l'âme de la poutre	[6.2.6.2.(1)]
Résistance	e de l'aile du	u renfort		_ 、 、
$F_{c,wb,Rd3} = k$	o _b t _b f _{yb} / (0.	8*γ _{M0})		
$F_{c,wb,Rd3} =$	1110,	38 [kN] Résistance de l'aile du renfort	[6.2.6.7.(1)]
Résistance	finale:			

 $F_{c,wb,Rd,low} = Min \ (F_{c,wb,Rd1} \ , \ F_{c,wb,Rd2} \ , \ F_{c,wb,Rd3})$

1110,38 [kN] Résistance de l'âme de la poutre $F_{c,wb,Rd,low} =$

[6.2.6.2.(1)]

PARAMETRES GEOMETRIQUES DE L'ASSEMBLAGE

LONGUEURS EFFICACES ET PARAMETRES - PLATINE D'ABOUT

Nr	М	mx	е	ex	р	l _{eff,cp}	l _{eff,nc}	leff,1	leff,2	l _{eff,cp,g}	leff,nc,g	leff,1
1	18	-	70	-	90	114	145	114	145	147	110	110
2	18	-	70	-	90	114	160	114	160	180	90	90
3	18	-	70	-	105	114	160	114	160	210	105	105
4	18	-	70	-	105	114	160	114	160	210	105	105
5	18	-	70	-	90	114	160	114	160	180	90	90
6	18	-	70	-	90	114	160	114	160	147	125	125
m _x e e _x p l _{eff,cp} l _{eff,cp} l _{eff,1} l _{eff,2} l _{eff,cp,g} l _{eff,nc,g} l _{eff,1,g} l _{eff,1,g}	9	18 - 70 - 90 114 160 114 160 147 125 125 - Distance du boulon de l'âme - Distance du boulon de l'aile de la poutre - Pince entre le boulon et le bord extérieur - Pince entre le boulon et le bord extérieur horizontal - Entraxe des boulons - Longueur efficace pour un boulon dans les mécanismes circulaires - Longueur efficace pour un boulon pour le mode 1 - Longueur efficace pour un boulon pour le mode 2 - Longueur efficace pour un groupe de boulons dans les mécanismes non circulaires - Longueur efficace pour un groupe de boulons dans les mécanismes non circulaires - Longueur efficace pour un groupe de boulons dans les mécanismes non circulaires - Longueur efficace pour un groupe de boulons dans les mécanismes non circulaires - Longueur efficace pour un groupe de boulons pour le mode 1 - - Longueur efficace pour un groupe de boulons pour le mode 1 - Longueur efficace pour un groupe de boulons pour le mode 1 - - - - - Longueur efficace pour un groupe de boulons pour le mode 1 - - - - - - Longueur efficace pour un groupe de boulons pour le mode 2 - - - - -										

RESISTANCE DE L'ASSEMBLAGE A LA COMPRESSION

$N_{j,Rd} = M$	in (N _{cb,Rd} 2 F _{c,wb}	,Rd,low)			
N _{j,Rd} =	2220,75	[kN]	Résistance de l'assemblage à la compression		[6.2]
N _{b1,Ed} / N	l _{j,Rd} ≤ 1,0		0,03 < 1,00	vérifié	(0,03)

RESISTANCE DE L'ASSEMBLAGE A LA FLEXION

$F_{t,wc,Rd}$ $F_{t,ep,Rd}$ $F_{t,wb,Rd}$ $F_{t,fc,Rd} = Min$	 résistar résistar résistar (F_{T,1,fc,Rd} , 	nce de l'âr nce de la p nce de l'âr F _{T,2,fc,Rd} , F	ne du poteau à la ti blatine fléchie à la f ne à la traction T _{T,3,fc,Rd})	raction lexion		[6.2.6.4] , [Tab.6.2]
$F_{t,wc,Rd} = \omega b$ $F_{t,ep,Rd} = Min$ $F_{t,wb,Rd} = b_{eff}$ RESISTANC	eff,t,wc twc t _{yc} I (F _{T,1,ep,Rd} , , _{t,wb} t _{wb} f _{yb} / CE DE LA	/ _{ΥΜ0} F _{T,2,ep,Rd} , ΥΜ0 RANGEE	F _{T,3,ep,Rd}) DE BOULONS N°	1		[6.2.6.3.(1)] [6.2.6.5] , [Tab.6.2] [6.2.6.8.(1)]
Ft1,Rd,co	omp – Form	ule		F t1,Rd,comp	Composant	

r ti,tu,oomp	- 11,110,0011	
$F_{t1,Rd} = Min (F_{t1,Rd,comp})$	221,18	Résistance d'une rangée de boulon
$F_{t,ep,Rd(1)} = 221,18$	221,18	Platine d'about – traction
$F_{t,wb,Rd(1)} = 297,25$	297,25	Ame de la poutre – traction
B _{p,Rd} = 743,05	743,05	Boulons au cisaillement/poinçonnement
F _{c,fb,Rd} = 1162,76	1162,76	Aile de la poutre – compression

RESISTANCE DE LA RANGEE DE BOULONS N° 2

Ft2,Rd,comp – Formule	Ft2,Rd,comp	Composant
$F_{t2,Rd} = Min (F_{t2,Rd,comp})$	221,18	Résistance d'une rangée de boulon

Ft2,Rd,comp – Formule	Ft2,Rd,com	P Composant
$F_{t.ep.Rd(2)} = 221,18$	221,18	Platine d'about – traction
$F_{t,wb,Rd(2)} = 297,25$	297,25	Ame de la poutre – traction
B _{p,Rd} = 743,05	743,05	Boulons au cisaillement/poinçonnement
$F_{c,fb,Rd} - \sum_{1}^{1} F_{ti,Rd} = 1162,76 - 221,18$	941,58	Aile de la poutre – compression
$F_{t,ep,Rd(2+1)} - \sum_{1}^{1} F_{ti,Rd} = 442,37 - 221,18$	221,18	Platine d'about - traction – groupe
$F_{t,wb,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 521,88 - 221,18$	300,69	Ame de la poutre - traction – groupe
Réduction supplémentaire de la résistance d'ur	ne rangée de	boulons
t _{12,Rd} = F _{t1,Rd} h ₂ /h ₁ t _{2,Rd} = 186,93 [kN] Résistance ré RESISTANCE DE LA RANGEE DE BOULONS Ν ⁶	éduite d'une ra ° 3	angée de boulon [6.2.7.2.(9)
F _{t3,Rd,comp} – Formule	F _{t3,Rd,comp}	Composant
$F_{t3,Rd} = Min (F_{t3,Rd,comp})$	221,18	Résistance d'une rangée de boulon
$F_{t.ep.Bd(3)} = 221,18$	221,18	Platine d'about – traction
$F_{t,wb,Rd(3)} = 297,25$	297,25	Ame de la poutre – traction
B _{p.Rd} = 743,05	743,05	Boulons au cisaillement/poinconnement
$F_{c,fb,Rd} - \sum_{1}^{2} F_{ti,Rd} = 1162,76 - 408,12$	754,65	Aile de la poutre – compression
$F_{t,ep,Rd(3+2)} - \sum_{2}^{2} F_{ti,Rd} = 442,37 - 186,93$	255,44	Platine d'about - traction - groupe
$F_{t,wb,Rd(3+2)} - \sum_{2^{2}} F_{tj,Rd} = 508,66 - 186,93$	321,73	Ame de la poutre - traction – groupe
$F_{t,ep,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 663,55 - 408,12$	255,44	Platine d'about - traction – groupe
$F_{t.wb,Rd(3+2+1)} - \sum_{2}^{1} F_{ti,Rd} = 795,77 - 408,12$	387,65	Ame de la poutre - traction – groupe
$F_{t3,Rd} = F_{t1,Rd} h_3/h_1$ $F_{t3,Rd} = 152,68$ [kN] Résistance ré $F_{t3,Rd} = F_{t2,Rd} h_3/h_2$ $F_{t3,Rd} = 152,68$ [kN] Résistance	éduite d'une ra réduite d'une	angée de boulon [6.2.7.2.(9) e rangée de boulon [6.2.7.2.(9)]FR
$F_{t3,Rd} = F_{t1,Rd} h_3/h_1$ $F_{t3,Rd} = 152,68$ [kN] Résistance ré $F_{t3,Rd} = F_{t2,Rd} h_3/h_2$ $F_{t3,Rd} = 152,68$ [kN] Résistance RESISTANCE DE LA RANGEE DE BOULONS N ⁴	éduite d'une ra réduite d'une ° 4	angée de boulon [6.2.7.2.(9) e rangée de boulon [6.2.7.2.(9)]FR
$F_{t3,Rd} = F_{t1,Rd} h_3/h_1$ $F_{t3,Rd} = 152,68 [kN] Résistance ré$ $F_{t3,Rd} = F_{t2,Rd} h_3/h_2$ $F_{t3,Rd} = 152,68 [kN] Résistance$ RESISTANCE DE LA RANGEE DE BOULONS Not the second	éduite d'une ra réduite d'une ° 4 Ft4,Rd,cd	angée de boulon [6.2.7.2.(9) e rangée de boulon [6.2.7.2.(9)]FR
$F_{t3,Rd} = F_{t1,Rd} h_3/h_1$ $F_{t3,Rd} = 152, 68 [kN] Résistance ré F_{t3,Rd} = F_{t2,Rd} h_3/h_2F_{t3,Rd} = 152, 68 [kN] Résistance RESISTANCE DE LA RANGEE DE BOULONS NG F_{t4,Rd,comp - Formule F_{t4,Rd} = Min (F_{t4,Rd,comp})$	éduite d'une ra réduite d'une ° 4 Ft4,Rd,cd 221,18	angée de boulon [6.2.7.2.(9) e rangée de boulon [6.2.7.2.(9)]FR. omp Composant Résistance d'une rangée de boulon
$F_{t3,Rd} = F_{t1,Rd} h_3/h_1$ $F_{t3,Rd} = 152, 68 [kN] Résistance ré$ $F_{t3,Rd} = F_{t2,Rd} h_3/h_2$ $F_{t3,Rd} = 152, 68 [kN] Résistance$ RESISTANCE DE LA RANGEE DE BOULONS N ^G $F_{t4,Rd,comp} - Formule$ $F_{t4,Rd} = Min (F_{t4,Rd,comp})$ $F_{t,ep,Rd(4)} = 221, 18$	éduite d'une ra réduite d'une ° 4 Ft4,Rd,cd 221,18 221,18	angée de boulon [6.2.7.2.(9) e rangée de boulon [6.2.7.2.(9)]FR omp Composant Résistance d'une rangée de boulon Platine d'about – traction Amo do la poutro traction
$F_{t3,Rd} = F_{t1,Rd} h_3/h_1$ $F_{t3,Rd} = 152,68 [kN] Résistance ré$ $F_{t3,Rd} = F_{t2,Rd} h_3/h_2$ $F_{t3,Rd} = 152,68 [kN] Résistance$ RESISTANCE DE LA RANGEE DE BOULONS N ^G $F_{t4,Rd,comp} - Formule$ $F_{t4,Rd} = Min (F_{t4,Rd,comp})$ $F_{t,ep,Rd(4)} = 221,18$ $F_{t,wb,Rd(4)} = 297,25$ $P_{t4,et} = 742,05$	éduite d'une ra réduite d'une ° 4 Et4,Rd,cd 221,18 221,18 297,25	angée de boulon [6.2.7.2.(9) e rangée de boulon [6.2.7.2.(9)]FR mp Composant Résistance d'une rangée de boulon Platine d'about – traction Ame de la poutre – traction
$F_{t3,Rd} = F_{t1,Rd} h_3/h_1$ $F_{t3,Rd} = 152,68 [kN] Résistance ré$ $F_{t3,Rd} = F_{t2,Rd} h_3/h_2$ $F_{t3,Rd} = 152,68 [kN] Résistance$ RESISTANCE DE LA RANGEE DE BOULONS N Ft4,Rd,comp - Formule $F_{t4,Rd} = Min (F_{t4,Rd,comp})$ $F_{t,ep,Rd(4)} = 221,18$ $F_{t,wb,Rd(4)} = 297,25$ $B_{p,Rd} = 743,05$ $F_{t3} F_{t2,Rd} = 560,80$	éduite d'une ra réduite d'une ° 4 221,18 221,18 297,25 743,05	angée de boulon [6.2.7.2.(9) e rangée de boulon [6.2.7.2.(9)]FR
$F_{t3,Rd} = F_{t1,Rd} h_3/h_1$ $F_{t3,Rd} = 152, 68 [kN] Résistance ré$ $F_{t3,Rd} = F_{t2,Rd} h_3/h_2$ $F_{t3,Rd} = 152, 68 [kN] Résistance$ RESISTANCE DE LA RANGEE DE BOULONS N Ft4,Rd,comp – Formule $F_{t4,Rd} = Min (F_{t4,Rd,comp})$ $F_{t,ep,Rd(4)} = 221,18$ $F_{t,wb,Rd(4)} = 297,25$ $B_{p,Rd} = 743,05$ $F_{c,fb,Rd} - \sum_{1}^{3} F_{tj,Rd} = 1162,76 - 560,80$ $F_{c,fb,Rd} - \sum_{1}^{3} F_{tj,Rd} = 142,37 - 152,68$	éduite d'une ra réduite d'une ° 4 221,18 221,18 297,25 743,05 601,97 289,69	angée de boulon [6.2.7.2.(9) e rangée de boulon [6.2.7.2.(9)]FR <u>omp</u> Composant Résistance d'une rangée de boulon Platine d'about – traction Ame de la poutre – traction Boulons au cisaillement/poinçonnement Aile de la poutre – compression Platine d'about – traction – groupe
$F_{t3,Rd} = F_{t1,Rd} h_3/h_1$ $F_{t3,Rd} = 152, 68 [kN] Résistance résistance résistance résistance résistance résistance résistance résistance résistance de la construction de la constructinaction de$	éduite d'une ra réduite d'une ° 4 Ft4,Rd,cd 221,18 221,18 297,25 743,05 601,97 289,69 395,11	angée de boulon [6.2.7.2.(9) e rangée de boulon [6.2.7.2.(9)]FR Composant Résistance d'une rangée de boulon Platine d'about – traction Ame de la poutre – traction Boulons au cisaillement/poinçonnement Aile de la poutre – compression Platine d'about - traction – groupe Ame de la poutre – traction – groupe
$F_{t3,Rd} = F_{t1,Rd} h_3/h_1$ $F_{t3,Rd} = 152, 68 [kN] Résistance ré$ $F_{t3,Rd} = F_{t2,Rd} h_3/h_2$ $F_{t3,Rd} = 152, 68 [kN] Résistance$ RESISTANCE DE LA RANGEE DE BOULONS N ^G $F_{t4,Rd,comp} - Formule$ $F_{t4,Rd} = Min (F_{t4,Rd,comp})$ $F_{t,ep,Rd(4)} = 221,18$ $F_{t,wb,Rd(4)} = 297,25$ $B_{p,Rd} = 743,05$ $F_{c,fb,Rd} - \sum_{1}^{3} F_{tj,Rd} = 1162,76 - 560,80$ $F_{t,ep,Rd(4 + 3)} - \sum_{3}^{3} F_{tj,Rd} = 442,37 - 152,68$ $F_{t,wb,Rd(4 + 3)} - \sum_{3}^{3} F_{tj,Rd} = 547,78 - 152,68$ $F_{t,wb,Rd(4 + 3)} - \sum_{3}^{3} F_{tj,Rd} = 547,78 - 152,68$	éduite d'une ra réduite d'une ° 4 221,18 221,18 221,18 297,25 743,05 601,97 289,69 395,11 323,94	angée de boulon [6.2.7.2.(9) e rangée de boulon [6.2.7.2.(9)]FR. mp Composant Résistance d'une rangée de boulon Platine d'about – traction Ame de la poutre – traction Boulons au cisaillement/poinçonnement Aile de la poutre – compression Platine d'about - traction – groupe Ame de la poutre - traction – groupe Platine d'about - traction – groupe
$F_{t3,Rd} = F_{t1,Rd} h_3/h_1$ $F_{t3,Rd} = 152, 68 [kN] Résistance ré F_{t3,Rd} = F_{t2,Rd} h_3/h_2$ $F_{t3,Rd} = 152, 68 [kN] Résistance RESISTANCE DE LA RANGEE DE BOULONS NG F_{t4,Rd,comp} - Formule F_{t4,Rd} = Min (F_{t4,Rd,comp}) F_{t,ep,Rd(4)} = 221,18 F_{t,wb,Rd(4)} = 297,25 B_{p,Rd} = 743,05 F_{c,fb,Rd} - \sum_{1}^{3} F_{tj,Rd} = 1162,76 - 560,80F_{t,ep,Rd(4 + 3)} - \sum_{3}^{3} F_{tj,Rd} = 442,37 - 152,68F_{t,wb,Rd(4 + 3)} - \sum_{3}^{3} F_{tj,Rd} = 547,78 - 152,68F_{t,ep,Rd(4 + 3 + 2)} - \sum_{3}^{2} F_{tj,Rd} = 663,55 - 339,61F_{u,wb,Rd(4 + 3)} - \sum_{3}^{2} F_{tj,Rd} = 782,55 - 339,61$	éduite d'une ra réduite d'une ° 4 221,18 221,18 221,18 297,25 743,05 601,97 289,69 395,11 323,94 442,94	angée de boulon [6.2.7.2.(9) e rangée de boulon [6.2.7.2.(9)]FR/ Composant Résistance d'une rangée de boulon Platine d'about – traction Ame de la poutre – traction Boulons au cisaillement/poinçonnement Aile de la poutre – compression Platine d'about - traction – groupe Ame de la poutre - traction – groupe Platine d'about - traction – groupe Platine d'about - traction – groupe
$F_{t3,Rd} = F_{t1,Rd} h_3/h_1$ $F_{t3,Rd} = 152, 68 [kN] Résistance résistance résistance résistance résistance résistance résistance résistance résistance de la construction de la constructinaction de$	éduite d'une ra réduite d'une ° 4 Ft4,Rd,cd 221,18 221,18 221,18 297,25 743,05 601,97 289,69 395,11 323,94 442,94 323,94	angée de boulon [6.2.7.2.(9) e rangée de boulon [6.2.7.2.(9)]FR Composant Résistance d'une rangée de boulon Platine d'about – traction Ame de la poutre – traction Boulons au cisaillement/poinçonnement Aile de la poutre – compression Platine d'about - traction – groupe Ame de la poutre - traction – groupe Platine d'about - traction – groupe
$F_{t3,Rd} = F_{t1,Rd} h_3/h_1$ $F_{t3,Rd} = 152, 68 [kN] Résistance résistance résistance résistance résistance résistance résistance résistance résistance de la construction de la constructinaction de$	éduite d'une ra réduite d'une ° 4 Ft4,Rd,cd 221,18 221,18 221,18 297,25 743,05 601,97 289,69 395,11 323,94 442,94 323,94 0 508,87	angée de boulon [6.2.7.2.(9) e rangée de boulon [6.2.7.2.(9)]FR Composant Résistance d'une rangée de boulon Platine d'about – traction Ame de la poutre – traction Boulons au cisaillement/poinçonnement Aile de la poutre – compression Platine d'about - traction – groupe Ame de la poutre - traction – groupe Ame de la poutre - traction – groupe Platine d'about - traction – groupe Ame de la poutre - traction – groupe
$F_{t3,Rd} = F_{t1,Rd} h_3/h_1$ $F_{t3,Rd} = 152, 68 [kN] Résistance résistance résistance résistance résistance résistance résistance d'una d'alle $	éduite d'une ra réduite d'une ° 4 221,18 221,18 221,18 221,18 297,25 743,05 601,97 289,69 395,11 323,94 442,94 323,94 0 508,87	angée de boulon [6.2.7.2.(9) e rangée de boulon [6.2.7.2.(9)]FR. omp Composant Résistance d'une rangée de boulon Platine d'about – traction Ame de la poutre – traction Boulons au cisaillement/poinçonnement Aile de la poutre – compression Platine d'about - traction – groupe Ame de la poutre - traction – groupe Platine d'about - traction – groupe Ame de la poutre - traction – groupe Platine d'about - traction – groupe Platine d'about - traction – groupe Ame de la poutre - traction – groupe Ame de la poutre - traction – groupe Platine d'about - traction – groupe Ame de la poutre - traction – groupe
$F_{t3,Rd} = F_{t1,Rd} h_3/h_1$ $F_{t3,Rd} = 152, 68 [kN] Résistance ré F_{t3,Rd} = F_{t2,Rd} h_3/h_2$ $F_{t3,Rd} = 152, 68 [kN] Résistance RESISTANCE DE LA RANGEE DE BOULONS N Ft4,Rd,comp – Formule Ft4,Rd = Min (Ft4,Rd,comp) Ft,ep,Rd(4) = 221,18 Ft,wb,Rd(4) = 297,25 Bp,Rd = 743,05 Fc,fb,Rd - \sum_{1}^{3} Ftj,Rd = 1162,76 - 560,80Ft,ep,Rd(4 + 3) - \sum_{3}^{3} Ftj,Rd = 442,37 - 152,68Ft,wb,Rd(4 + 3) - \sum_{3}^{3} Ftj,Rd = 547,78 - 152,68Ft,ep,Rd(4 + 3 + 2) - \sum_{3}^{2} Ftj,Rd = 663,55 - 339,61Ft,ep,Rd(4 + 3 + 2) - \sum_{3}^{2} Ftj,Rd = 884,74 - 560,80Ft,ep,Rd(4 + 3 + 2 + 1) - \sum_{3}^{1} Ftj,Rd = 1069,66 - 560,80Réduction supplémentaire de la résistance d'ur$	éduite d'une ra réduite d'une ° 4	angée de boulon [6.2.7.2.(9) e rangée de boulon [6.2.7.2.(9)]FR Composant Résistance d'une rangée de boulon Platine d'about – traction Ame de la poutre – traction Boulons au cisaillement/poinçonnement Aile de la poutre – compression Platine d'about - traction – groupe Ame de la poutre - traction – groupe Platine d'about - traction – groupe Platine d'about - traction – groupe Ame de la poutre - traction – groupe bulons
$F_{t3,Rd} = F_{t1,Rd} h_3/h_1$ $F_{t3,Rd} = 152, 68 [kN] Résistance résistance résistance résistance = 152, 68 [kN] Résistance résistance = 152, 68 [kN] Résistance = RESISTANCE DE LA RANGEE DE BOULONS Note = Resistance = Res$	éduite d'une ra réduite d'une ° 4 Ft4,Rd,cd 221,18 221,18 221,18 297,25 743,05 601,97 289,69 395,11 323,94 442,94 323,94 0 508,87 te rangée de	angée de boulon [6.2.7.2.(9) e rangée de boulon [6.2.7.2.(9)]FR mp Composant Résistance d'une rangée de boulon Platine d'about – traction Ame de la poutre – traction Boulons au cisaillement/poinçonnement Aile de la poutre – compression Platine d'about - traction – groupe Ame de la poutre - traction – groupe Platine d'about - traction – groupe Ame de la poutre - traction – groupe Platine d'about - traction – groupe Ame de la poutre - traction – groupe Elatine d'about - traction – groupe Ame de la poutre - traction – groupe
$F_{t3,Rd} = F_{t1,Rd} h_3/h_1$ $F_{t3,Rd} = 152, 68 [kN] Résistance ré F_{t3,Rd} = F_{t2,Rd} h_3/h_2$ $F_{t3,Rd} = 152, 68 [kN] Résistance RESISTANCE DE LA RANGEE DE BOULONS N Ft4,Rd, comp – Formule Ft4,Rd = Min (Ft4,Rd,comp) Ft,ep,Rd(4) = 221,18 Ft,wb,Rd(4) = 297,25 Bp,Rd = 743,05 Fc,fb,Rd - \sum_{13} F_{tj,Rd} = 1162,76 - 560,80Ft,ep,Rd(4 + 3) - \sum_{3} 3 F_{tj,Rd} = 442,37 - 152,68Ft,wb,Rd(4 + 3) - \sum_{3} 3 F_{tj,Rd} = 547,78 - 152,68Ft,ep,Rd(4 + 3 + 2) - \sum_{3} 2 F_{tj,Rd} = 663,55 - 339,61Ft,ep,Rd(4 + 3 + 2) - \sum_{3} 2 F_{tj,Rd} = 782,55 - 339,61Ft,wb,Rd(4 + 3 + 2 + 1) - \sum_{3} 3 F_{tj,Rd} = 1069,66 - 560,80Ft,wb,Rd(4 + 3 + 2 + 1) - \sum_{3} 3 F_{tj,Rd} = 1069,66 - 560,80Ft,wb,Rd(4 + 3 + 2 + 1) - \sum_{3} 3 F_{tj,Rd} = 1069,66 - 560,80Ft,wb,Rd(4 + 3 + 2 + 1) - \sum_{3} 3 F_{tj,Rd} = 1069,66 - 560,80Ft,wb,Rd(4 + 3 + 2 + 1) - \sum_{3} 3 F_{tj,Rd} = 1069,66 - 560,80Ft,wb,Rd(4 + 3 + 2 + 1) - \sum_{3} 3 F_{tj,Rd} = 1069,66 - 560,80Ft,wb,Rd(4 + 3 + 2 + 1) - \sum_{3} 3 F_{tj,Rd} = 1069,66 - 560,80Ft,wb,Rd(4 + 3 + 2 + 1) - \sum_{3} 3 F_{tj,Rd} = 1069,66 - 560,80Ft,wb,Rd(4 + 3 + 2 + 1) - \sum_{3} 3 F_{tj,Rd} = 1069,66 - 560,80Ft,wb,Rd(4 + 3 + 2 + 1) - \sum_{3} 3 F_{tj,Rd} = 1069,66 - 560,80Ft,wb,Rd(4 + 3 + 2 + 1) - \sum_{3} 3 F_{tj,Rd} = 1069,66 - 560,80Ft,wb,Rd(4 + 3 + 2 + 1) - \sum_{3} 3 F_{tj,Rd} = 1069,66 - 560,80Ft,wb,Rd(4 + 3 + 2 + 1) - \sum_{3} 3 F_{tj,Rd} = 1069,66 - 560,80Ft,wb,Rd(4 + 3 + 2 + 1) - \sum_{3} 3 F_{tj,Rd} = 1069,66 - 560,80Ft,wb,Rd(4 + 3 + 2 + 1) - \sum_{3} 3 F_{tj,Rd} = 1069,66 - 560,80Ft,wb,Rd(4 + 3 + 2 + 1) - \sum_{3} 3 F_{tj,Rd} = 1069,66 - 560,80Ft,wb,Rd(4 + 3 + 2 + 1) - \sum_{3} 3 F_{tj,Rd} = 1069,66 - 560,80Ft,wb,Rd(4 = 107,01 [kN] Résistance réFt,Rd = Ft2,Rd h4/h2Ft,Rd = 107,01 [kN] Résistance réFt,Rd = 107,01 [kN] Résistance ré$	éduite d'une ra réduite d'une ° 4	angée de boulon [6.2.7.2.(9)]FR. mangée de boulon [6.2.7.2.(9)]FR. mangée de boulon [6.2.7.2.(9)]FR. mangée de boulon [6.2.7.2.(9)]FR. mangée de boulon - traction Ame de la poutre - traction Ame de la poutre - traction Boulons au cisaillement/poinçonnement Aile de la poutre - traction - groupe Ame de la poutre - traction - groupe Ame de la poutre - traction - groupe Platine d'about - traction - groupe Ame de la poutre - traction - groupe Ame de la
$F_{t3,Rd} = F_{t1,Rd} h_3/h_1$ $F_{t3,Rd} = 152, 68 [kN] Résistance ré F_{t3,Rd} = F_{t2,Rd} h_3/h_2 F_{t3,Rd} = 152, 68 [kN] Résistance RESISTANCE DE LA RANGEE DE BOULONS N Ft4,Rd,comp – Formule F_t4,Rd = Min (F_{t4,Rd,comp}) F_{t,ep,Rd(4)} = 221,18 F_{t,wb,Rd(4)} = 297,25 B_{p,Rd} = 743,05 F_{c,fb,Rd} - \sum_{1^3} F_{tj,Rd} = 1162,76 - 560,80F_{t,ep,Rd(4 + 3)} - \sum_{3^3} F_{tj,Rd} = 442,37 - 152,68F_{t,wb,Rd(4 + 3)} - \sum_{3^3} F_{tj,Rd} = 547,78 - 152,68F_{t,ep,Rd(4 + 3)} - \sum_{3^3} F_{tj,Rd} = 663,55 - 339,61F_{t,wb,Rd(4 + 3 + 2)} - \sum_{3^2} F_{tj,Rd} = 782,55 - 339,61F_{t,wb,Rd(4 + 3 + 2 + 1)} - \sum_{3^1} F_{tj,Rd} = 1069,66 - 560,80Réduction supplémentaire de la résistance d'urT_{4,Rd} = 107,01 [kN] Résistance réRésistance réRESISTANCE DE LA RANGEE DE BOULONS NRésistance réRESISTANCE DE LA RANGEE DE BOULONS N$	éduite d'une ra réduite d'une ° 4 Ft4,Rd,cc 221,18 221,18 221,18 297,25 743,05 601,97 289,69 395,11 323,94 442,94 323,94 442,94 323,94 0 508,87 Te rangée de éduite d'une ra éduite d'une ra	angée de boulon [6.2.7.2.(9) e rangée de boulon [6.2.7.2.(9)]FR/ mp Composant Résistance d'une rangée de boulon Platine d'about – traction Ame de la poutre – traction Boulons au cisaillement/poinçonnement Aile de la poutre – compression Platine d'about - traction – groupe Ame de la poutre - traction – groupe Platine d'about - traction – groupe Platine d'about - traction – groupe Platine d'about - traction – groupe Ame de la poutre - traction – groupe Platine d'about - traction – groupe Ame de la poutre - traction – groupe (angée de boulon [6.2.7.2.(9)]FR/
$F_{t3,Rd} = F_{t1,Rd} h_3/h_1$ $F_{t3,Rd} = 152, 68 [kN] Résistance résistance résistance = 152, 68 [kN] Résistance résistance = 152, 68 [kN] Résistance = 152, 68 [kN] Résistance = 152, 68 [kN] Résistance = RESISTANCE DE LA RANGEE DE BOULONS Note: = Resistance = $	éduite d'une ra réduite d'une ° 4	angée de boulon [6.2.7.2.(9)]FR. omp Composant Résistance d'une rangée de boulon Platine d'about – traction Platine d'about – traction Ame de la poutre – traction Boulons au cisaillement/poinçonnement Aile de la poutre – compression Platine d'about - traction – groupe Platine d'about - traction – groupe Ame de la poutre - traction – groupe Platine d'about - traction – groupe Platine d'about - traction – groupe Platine d'about - traction – groupe Ame de la poutre - traction – groupe Ame de la poutre - traction – groupe Ame de la poutre - traction – groupe Ame de la poutre - traction – groupe Isoulons [6.2.7.2.(9)]FR. angée de boulon [6.2.7.2.(9)]FR. Résistance d'une rangée de boulon [6.2.7.2.(9)]FR. Résistance d'une rangée de boulon [6.2.7.2.(9)]FR.
$F_{t3,Rd} = F_{t1,Rd} h_3/h_1$ $F_{t3,Rd} = 152, 68 [kN] Résistance ré F_{t3,Rd} = F_{t2,Rd} h_3/h_2$ $F_{t3,Rd} = 152, 68 [kN] Résistance RESISTANCE DE LA RANGEE DE BOULONS N Ft4,Rd,comp – Formule F_{t4,Rd} = Min (F_{t4,Rd,comp}) F_{t,ep,Rd(4)} = 221,18 F_{t,wb,Rd(4)} = 297,25 B_{p,Rd} = 743,05 F_{c,fb,Rd} - \sum_{3}^{3} F_{ij,Rd} = 1162,76 - 560,80F_{t,ep,Rd(4 + 3)} - \sum_{3}^{3} F_{ij,Rd} = 442,37 - 152,68F_{t,wb,Rd(4 + 3)} - \sum_{3}^{3} F_{ij,Rd} = 663,55 - 339,61F_{t,ep,Rd(4 + 3 + 2)} - \sum_{3}^{2} F_{ij,Rd} = 663,55 - 339,61F_{t,ep,Rd(4 + 3 + 2)} - \sum_{3}^{2} F_{ij,Rd} = 1069,66 - 560,80F_{t,wb,Rd(4 + 3 + 2 + 1)} - \sum_{3}^{1} F_{ij,Rd} = 1069,66 - 560,80F_{t,wb,Rd(4 + 3 + 2 + 1)} - \sum_{3}^{1} F_{ij,Rd} = 1069,66 - 560,80F_{t,wb,Rd(4 + 3 + 2 + 1)} - \sum_{3}^{1} F_{ij,Rd} = 1069,66 - 560,80Réduction supplémentaire de la résistance d'urT_{4,Rd} = 107,01 [kN] Résistance réRESISTANCE DE LA RANGEE DE BOULONS NF_{t5,Rd,comp} - Formule$ F_{t5,Rd} = Min (F_{t5,Rd,comp}) F_{tep,Rd(5)} = 221.18	éduite d'une ra réduite d'une ° 4	angée de boulon [6.2.7.2.(9)]FR/ erangée de boulon [6.2.7.2.(9)]FR/ omp Composant Résistance d'une rangée de boulon Platine d'about – traction Platine d'about – traction Ame de la poutre – traction Boulons au cisaillement/poinçonnement Aile de la poutre – compression Platine d'about - traction – groupe Ame de la poutre - traction – groupe Ame de la poutre - traction – groupe Platine d'about - traction – groupe Platine d'about - traction – groupe Ame de la poutre - traction – groupe Ame de la poutre - traction – groupe Ame de la poutre - traction – groupe Ame de la poutre - traction – groupe Ame de la poutre - traction – groupe Isoulons [6.2.7.2.(9)]FR/ angée de boulon [6.2.7.2.(9)]FR/ tat.comp Composant 18 Platine d'about - traction
$F_{t3,Rd} = F_{t1,Rd} h_3/h_1$ $F_{t3,Rd} = 152, 68 [kN] Résistance ré F_{t3,Rd} = F_{t2,Rd} h_3/h_2 F_{t3,Rd} = 152, 68 [kN] Résistance RESISTANCE DE LA RANGEE DE BOULONS N° F_{t4,Rd, comp - Formule F_{t4,Rd} = Min (F_{t4,Rd,comp}) F_{t,ep,Rd(4)} = 221,18 F_{t,wb,Rd(4)} = 297,25 B_{p,Rd} = 743,05 F_{c,fb,Rd} - \sum_{3}^{3} F_{tj,Rd} = 1162,76 - 560,80F_{t,ep,Rd(4 + 3)} - \sum_{3}^{3} F_{tj,Rd} = 442,37 - 152,68F_{t,wb,Rd(4 + 3)} - \sum_{3}^{3} F_{tj,Rd} = 663,55 - 339,61F_{t,ep,Rd(4 + 3 + 2)} - \sum_{3}^{2} F_{tj,Rd} = 782,55 - 339,61F_{t,ep,Rd(4 + 3 + 2)} - \sum_{3}^{2} F_{tj,Rd} = 1069,66 - 560,80F_{t,wb,Rd(4 + 3 + 2 + 1) - \sum_{3}^{3} F_{tj,Rd} = 1069,66 - 560,80F_{t,wb,Rd(4 + 3 + 2 + 1) - \sum_{3}^{3} F_{tj,Rd} = 1069,66 - 560,80F_{t,wb,Rd(4 + 3 + 2 + 1) - \sum_{3}^{3} F_{tj,Rd} = 1069,66 - 560,80F_{t,wb,Rd(4 + 3 + 2 + 1) - \sum_{3}^{3} F_{tj,Rd} = 1069,66 - 560,80F_{t,wb,Rd(4 + 3 + 2 + 1) - \sum_{3}^{3} F_{tj,Rd} = 1069,66 - 560,80F_{t,wb,Rd(4 + 3 + 2 + 1) - \sum_{3}^{3} F_{tj,Rd} = 1069,66 - 560,80F_{t,wb,Rd(4 + 3 + 2 + 1) - \sum_{3}^{3} F_{tj,Rd} = 1069,66 - 560,80F_{t,wb,Rd(4 + 3 + 2 + 1) - \sum_{3}^{3} F_{tj,Rd} = 1069,66 - 560,80F_{t,wb,Rd(4 + 3 + 2 + 1) - \sum_{3}^{3} F_{tj,Rd} = 1069,66 - 560,80F_{t,k,Rd} = F_{t1,Rd} h_4/h_1F_{t4,Rd = 107,01 [kN] Résistance réESISTANCE DE LA RANGEE DE BOULONS N°F_{t5,Rd,comp - FormuleF_{t5,Rd} = Min (F_{t5,Rd,comp})F_{t,ep,Rd(5)} = 221,18F_{t,wb,Rd(5)} = 221,25$	éduite d'une ra réduite d'une ° 4	angée de boulon [6.2.7.2.(9)]FR. e rangée de boulon [6.2.7.2.(9)]FR. mp Composant Résistance d'une rangée de boulon Platine d'about – traction Ame de la poutre – traction Boulons au cisaillement/poinçonnement Aile de la poutre – compression Platine d'about - traction – groupe Ame de la poutre - traction – groupe Platine d'about - traction – groupe Platine d'about - traction – groupe Ame de la poutre - traction – groupe Platine d'about - traction – groupe boulons angée de boulon [6.2.7.2.(9)]FR. tal.comp Composant Résistance d'une rangée de boulon Résistance d'une rangée de boulon Platine d'about - traction

494,96

335**,**36

403,86

 $F_{c,fb,Rd}$ - $\sum_{1}^{4} F_{tj,Rd}$ = 1162,76 - 667,81

 $F_{t,ep,Rd(5+4)}$ - $\sum_{4}^{4} F_{tj,Rd} = 442,37$ - 107,01

 $F_{t,wb,Rd(5+4)}$ - $\sum_{4}^{4} F_{tj,Rd}$ = 508,66 - 107,01

 $F_{t,ep,Rd(5 + 4 + 3)}$ - $\sum_{4}^{3} F_{tj,Rd}$ = 663,55 - 259,69

Aile de la poutre - compression

401,65 Ame de la poutre - traction - groupe

Platine d'about - traction - groupe

Platine d'about - traction - groupe

Ft5,Rd,comp - Formule	Ft5,Rd,comp	Composant
$F_{t,wb,Rd(5+4+3)}$ - $\sum_{4}{}^{3}F_{tj,Rd}$ = 782,55 - 259,69	522,86	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(5+4+3+2)}$ - $\sum_{4}^{2} F_{tj,Rd}$ = 884,74 - 446,62	438,11	Platine d'about - traction - groupe
$F_{t,wb,Rd(5+4+3+2)}$ - $\sum_{4}^{2} F_{tj,Rd}$ = 1017,32 - 446,62	570,69	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(5+4+3+2+1)} - \sum_{4}^{1} F_{tj,Rd} = 1105,92 - 667,81$	438,11	Platine d'about - traction - groupe
$F_{t,wb,Rd(5+4+3+2+1)}$ - $\sum_{4}^{1} F_{tj,Rd} = 1304,43$ - 667,81	636,62	Ame de la poutre - traction - groupe

 $F_{t5,Rd} = F_{t1,Rd} h_5/h_1$

DECICTA				
F _{t5,Rd} =	72,76	[kN]	Résistance réduite d'une rangée de boulon	[6.2.7.2.(9)]FRA
$F_{t5,Rd} = F_{t2}$	2,Rd h5/h2			
F _{t5,Rd} =	72,76	[kN]	Résistance réduite d'une rangée de boulon	[6.2.7.2.(9)]
· 15,Ru - · 11	,Ru 15/11			

RESISTANCE DE LA RANGEE DE BOULONS N° 6

Ft6,Rd,comp - Formule	F t6,Rd,com p	Composant
$F_{t6,Rd} = Min (F_{t6,Rd,comp})$	221,18	Résistance d'une rangée de boulon
$F_{t,ep,Rd(6)} = 221,18$	221,18	Platine d'about - traction
$F_{t,wb,Rd(6)} = 297,25$	297,25	Ame de la poutre - traction
B _{p,Rd} = 743,05	743,05	Boulons au cisaillement/poinçonnement
$F_{c,fb,Rd}$ - $\sum_{1}^{5} F_{tj,Rd}$ = 1162,76 - 740,56	422,20	Aile de la poutre - compression
$F_{t,ep,Rd(6+5)}$ - \sum_{5}^{5} $F_{tj,Rd}$ = 442,37 - 72,76	369,61	Platine d'about - traction - groupe
$F_{t,wb,Rd(6+5)}$ - $\sum_{5}^{5} F_{tj,Rd}$ = 560,89 - 72,76	488,13	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(6+5+4)}$ - $\sum_{5}^{4} F_{tj,Rd}$ = 663,55 - 179,77	483,78	Platine d'about - traction - groupe
$F_{t,wb,Rd(6+5+4)}$ - $\sum_{5}^{4} F_{tj,Rd}$ = 834,78 - 179,77	655,01	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 884,74 - 332,45$	552 , 29	Platine d'about - traction - groupe
$F_{t,wb,Rd(6+5+4+3)}$ - $\sum_{5}^{3} F_{tj,Rd}$ = 1108,67 - 332,45	776,22	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(6+5+4+3+2)}$ - $\sum_{5}^{2} F_{tj,Rd}$ = 1105,92 - 519,38	586,54	Platine d'about - traction - groupe
$F_{t,wb,Rd(6+5+4+3+2)}$ - $\sum_{5}^{2} F_{tj,Rd}$ = 1343,44 - 519,38	824,06	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(6 + 5 + 4 + 3 + 2 + 1)}$ - $\sum_{5}^{1} F_{tj,Rd}$ = 1327,10 - 740,56	586,54	Platine d'about - traction - groupe
$F_{t,wb,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1630,55 - 740,56$	889,99	Ame de la poutre - traction - groupe

Réduction supplémentaire de la résistance d'une rangée de boulons

 $F_{t6,Rd} = F_{t1,Rd} h_6/h_1$

$F_{t6,Rd} =$	38,51	[kN]	Résistance réduite d'une rangée de boulon			[6.2.7.2.(9)]		
$F_{t6,Rd} = F$ $F_{t6,Rd} =$	F _{t2,Rd} h ₆ /h ₂ 38,51	[kN]	Résistance	réduite d'une	e rangée de b	oulon	[6.2.7	.2.(9)]FRA
				-	-	-	-	P
INF	nj	F tj,Rd	Ft,fc,Rd	Ft,wc,Rd	Ft,ep,Rd	Ft,wb,Rd	F t,Rd	₿p,Rd
1	581	221,18	-	-	221,18	297,25	221,18	743,05

1	581	221,18	-	-	221,18	297,25	221,18	743 , 05
2	491	186,93	-	-	221,18	297,25	221,18	743,05
3	401	152,68	-	-	221,18	297,25	221,18	743,05
4	281	107,01	-	-	221,18	297,25	221,18	743,05
5	191	72,76	-	-	221,18	297,25	221,18	743,05
6	101	38,51	-	-	221,18	297,25	221,18	743 , 05

RESISTANCE DE L'ASSEMBLAGE A LA FLEXION M_{j,Rd}

 $M_{j,Rd} = \sum h_j F_{tj,Rd}$

$M_{j,Rd} =$	329,51	[kN*m]	Résistance de l'assemblage à	[6.2]	
M _{b1}	$_{Ed}$ / $M_{i,Rd} \leq 1,0$		0,45 < 1,00	vérifié	(0,45)

RESISTANCE DE L'ASSEMBLAGE AU CISAILLEMENT

α _v =	0,60		Coefficient pour le calcul de $F_{v,Rd}$	[Tableau 3.4]
$\beta_{Lf} =$	0,94		Coefficient réducteur pour les assemblages longs	[3.8]
F _{v,Rd} =	92,02	[kN	Résistance d'un boulon au cisaillement	[Tableau

α _v =	0,60	Co	[Tableau 3.4]				
F _{t,Rd,max} =	110,5 9 328,5] [kN Re] [kN Re	Résistance d'un boulon à la traction Résistance du boulon intérieur en pression				
$F_{b,Rd,int} =$	0 328,5 0] dia [kN Re] Re	amétrale ésistance du boulor	n de rive en press	sion diamétrale	3.4] [Tableau 3.4]	
N r	F tj,Rd,N	F _{tj,Ed,N}	F _{tj,Rd,M}	F tj,Ed,M	Ftj,Ed	F vj,Rd	
1	221,18	-10,24	221,18	98 , 95	88,72	131,31	
2	221,18	-10,24	186,93	83,63	73,39	140,41	
3	221,18	-10,24	152,68	68,31	58,07	149,52	
4	221,18	-10,24	107,01	47,87	37,64	161,66	
5	221,18	-10,24	72,76	32,55	22,31	170,77	
6	221,18	-10,24	38,51	17,23	6,99	179,88	
$F_{ij,Rd,N}$ - Résistance d'une rangée de boulons à la traction pure $F_{ij,Ed,N}$ - Effort dans une rangée de boulons dû à l'effort axial $F_{ij,Rd,M}$ - Résistance d'une rangée de boulons à la flexion pure $F_{ij,Ed,M}$ - Effort dans une rangée de boulons dû au moment $F_{ij,Ed,M}$ - Effort de traction maximal dans la rangée de boulons $F_{ij,Ed,M}$ - Effort de traction maximal dans la rangée de boulons $F_{ij,Ed,M}$ - Résistance réduite d'une rangée de boulons $F_{ij,Ed,M}$ - Résistance réduite d'une rangée de boulons $F_{ij,Ed,N} = N_{j,Ed}$ $F_{ij,Rd,N} / N_{j,Rd}$ $F_{ij,Ed,M} = M_{j,Ed}$ $F_{ij,Rd,M} / M_{j,Rd}$ $F_{ij,Ed,M} = F_{ij,Ed,N} + F_{ij,Ed,M}$							
$V_{i,Rd} = n_h \Sigma$	$F_1^n F_{vi,Rd}$	9 · · · · · · · · · · · · · · · · · · ·	., .,, ,	-, - , 1		[Tableau 3.4]	
V _{j,Rd} =	933,55	[kN] Ré	sistance de l'assem	nblage au cisaillei	ment	[Tableau 3.4]	
V _{b1,E}	d / V _{j,Rd} ≤ 1,0		0,02 < 1,0)0 v	érifié	(0,02)	

RESISTANCE DES SOUDURES

A _w =	205,1 5	[cm 2]	Aire de toutes les soudures	[4.5.3.2 (2)]
A _{wy} =	85,51	[cm 2]	Aire des soudures horizontales	[4.5.3.2 (2)]
A _{wz} =	119,6 4	[cm 2]	Aire des soudures verticales	[4.5.3.2 (2)]
I _{wy} =	99391 ,65	[cm 4]	Moment d'inertie du système de soudures par rapport à l'axe horiz.	[4.5.3.2 (5)]
σ _{⊥max} =τ _{⊥m} _{ax} =	_ 39,39	[M Pa]	Contrainte normale dans la soudure	[4.5.3.2 (6)]
$\sigma_{\perp}=\tau_{\perp}=$		[M Pa]	Contraintes dans la soudure verticale	[4.5.3.2 (5)]
τ _{II} =	-1,64	[M Pa]	Contrainte tangentielle	[4.5.3.2 (5)]
$\beta_w =$	0,80		Coefficient de corrélation	[4.5.3.2 (7)]
$\sqrt{[\sigma_{\perp max}^2 + 3]}$	$(\tau_{\perp max}^2) \leq f_u$	′(β _w *γ _{M2})	78,79 < 365,00 vérifié	(0,22)
√[σ⊥² + 3*(τ.	$[1^{2}+\tau_{II}^{2})] \leq f_{u}/(\beta_{I}^{2})$	3 _w *γ _{M2})	75,26 < 365,00 vérifié	(0,21)
$\sigma_{\perp} \leq 0.9^* f_u / \gamma$	M2		39,39 < 262,80 vérifié	(0,15)

<u>RIGIDITE DE L'ASSEMBLAGE</u>

t _{wash} =	4	[mm]	Epaisseur de la plaquette	[6.2.6.3.(2)]
h _{head} =	13	[mm]	Hauteur de la tête du boulon	[6.2.6.3.(2)]
h _{nut} =	18	[mm]	Hauteur de l'écrou du boulon	[6.2.6.3.(2)]
$L_b =$	66	[mm]	Longueur du boulon	[6.2.6.3.(2)]

<u>RIGIDITE DE L'ASSEMBLAGE</u>

t _{wash} = k ₁₀ =	4 5	[mm] E [mm] C	paisseur de Coefficient de	la plaquette rigidité des b	oulons		[6.2.6.3.(2)] [6.3.2.(1)]
RIGID	ITES DES	S RANGE	ES DE BO	ULONS			
Nr	hj	k 3	k 4	k 5	k eff,j	k _{eff,j} h _j	keff,j hj²
					Somme	92,10	3896,09
1	581	∞	∞	259	5	26,23	1524,38
2	491	∞	×	212	4	22,00	1080,43
3	401	×	×	248	5	18,08	725,14
4	281	∞	×	248	5	12,67	356 , 21
5	191	00	00	212	4	8,56	163,68
6	101	×	×	269	5	4,57	46,25
$k_{eff,i} = 1 /$	$(\sum_{3}^{5} (1 / k_{i,j}))$						[6.3.3.1.(2)]
$z_{eq} = \sum_{i} k$	k _{eff,j} h _j ² / ∑ _j k _{eff}	_{f,i} h _i					
z _{eq} =	423 [r	mm] Bra	as de levier é	quivalent			[6.3.3.1.(3)]
k _{eq} = ∑ _j k	k _{eff,j} h _j / z _{eq}						
k _{eq} =	22 [m	nm] Co	efficient de ri	gidité équivale	ent du système d	e boulons	[6.3.3.1.(1)]
$S_{j,ini} = E$:	z _{eq} ² k _{eq}						[6.3.1.(4)]
S _{j,ini} =	818178,2	26 [kN*r	n] Rigid	ité en rotation	initiale		[6.3.1.(4)]
μ=	1,00	Co	efficient de ri	gidité de l'ass	emblage		[6.3.1.(6)]
$S_j = S_{j,ini}$	/μ						[6.3.1.(4)]
S _j =	818178,26	[kN*m]	Rigidité	en rotation fi	nale		[6.3.1.(4)]
Classific	cation de l'as	ssemblage p	ar rigidité.				
S _{j,rig} =	138207,	60 [kN*	m] Rigic	lité de l'assem	nblage rigide		[5.2.2.5]
$S_{j,pin} =$	8637,	98 [kN*i	m] Rigic	lité de l'assem	nblage articulé		[5.2.2.5]
$S_{j,ini} \geq S_{j,i}$	rig RIGIDE						

COMPOSANT LE PLUS FAIBLE:

RUPTURE DES BOULONS

Assemblage satisfaisant vis à vis de la Norme Ratio 0,45

Autodesk Robot Structural Analysis Professional 2018 Calcul de l'Encastrement Traverse-Poteau NF EN 1993-1-8:2005/NA:2007/AC:2009

GENERAL

Assemblage N°:	2
Nom de l'assemblage :	Angle de portique
Noeud de la structure:	40
Barres de la structure:	30, 33

GEOMETRIE

POTEAU

Profilé:		IPE 450		
Barre N°:		30		
α =		-90,0	[Deg]	Angle d'inclinaison
h _c =		450	[mm]	Hauteur de la section du poteau
b _{fc} =		190	[mm]	Largeur de la section du poteau
t _{wc} =		9	[mm]	Epaisseur de l'âme de la section du poteau
t _{fc} =		15	[mm]	Epaisseur de l'aile de la section du poteau
r _c =		21	[mm]	Rayon de congé de la section du poteau
$A_c =$		98,82	[cm ²]	Aire de la section du poteau
$I_{xc} =$		33742,90	[cm ⁴]	Moment d'inertie de la section du poteau
Matériau:		ACIER E	24	
f _{yc} =		235,0	00 [MPa]	Résistance
POUTRE	<u>]</u>			
Profilé:				IPE 550
Barre N°:				33
α =	11,3	[Deg]	Angle	d'inclinaison
h _b =	550	[mm]	Haute	eur de la section de la poutre
b _f =	210	[mm]	Large	ur de la section de la poutre
t _{wb} =	11	[mm]	Epais	seur de l'âme de la section de la poutre
t _{fb} =	17	[mm]	Epais	seur de l'aile de la section de la poutre
r _b =	24	[mm]	Rayo	n de congé de la section de la poutre
r _b =	24	[mm]	Rayo	n de congé de la section de la poutre
A _b =	134,42	[cm ²]	Aire d	e la section de la poutre
$I_{xb} =$	67116 , 50	[cm ⁴]	Mome	ent d'inertie de la poutre
Matériau:	AC	IER E24		
f _{yb} =	235,00	[MPa]	Résistance	

BOULONS

Le plan de o	cisaillement pa	isse par la par	tie NON FILETÉE du boulon
d =	20	[mm]	Diamètre du boulon
Classe =	10.9		Classe du boulon
F _{tRd} =	176,40	[kN]	Résistance du boulon à la traction
n _h =	2		Nombre de colonnes des boulons
n _v =	6		Nombre de rangéss des boulons
h ₁ =	59	[mm]	Pince premier boulon-extrémité supérieure de la platine d'about
Ecartement	e; =	70 [mm]	

 Ecartement e_i =
 70 [mm]

 Entraxe p_i =
 125;115;1100;125 [mm]

PLATINE

h _p =	721	[mm]	Hau	teur de la pl	atine
b _p =	210	[mm]	Larg	jeur de la pla	atine
t _p =	20	[mm]	Epa	isseur de la	platine
Matéria	au:	AC	CIER		
f _{yp} =		235	5,00	[MPa]	Résistance

JARRET INFERIEUR

w _d =	210	[mm]	Largeur de la	platine
t _{fd} =	18	[mm]	Epaisseur de	l'aile
h _d =	140	[mm]	Hauteur de la	platine
t _{wd} =	12	[mm]	Epaisseur de	l'âme
$I_d =$	300	[mm]	Longueur de l	a platine
α =	34,1	[Deg]	Angle d'inclina	aison
Matériau:		ACIE	R	
f _{ybu} =		235,0	0 [MPa]	Résistance

RAIDISSEUR POTEAU

Supérieur

h _{su} =	421	[mm]	Hauteur du raidisseur
b _{su} =	90	[mm]	Largeur du raidisseur
t _{hu} =	8	[mm]	Epaisseur du raidisseur
Matériau:	ACIE	R	
f _{ysu} =	235,00	[MPa]	Résistance
Inférieur			
h _{sd} =	421	[mm]	Hauteur du raidisseur
b _{sd} =	90	[mm]	Largeur du raidisseur
t _{hd} =	8	[mm]	Epaisseur du raidisseur
Matériau:	ACIE	R	
f _{ysu} =	235,00	[MPa]	Résistance

SOUDURES D'ANGLE

a _w =	10	[mm]	Soudure âme
a _f =	13	[mm]	Soudure semelle
a _s =	10	[mm]	Soudure du raidisseur
a _{fd} =	10	[mm]	Soudure horizontale

COEFFICIENTS DE MATERIAU

γ _{M0} =	1,00	Coefficient de sécurité partiel	[2.2]
γ _{M1} =	1,00	Coefficient de sécurité partiel	[2.2]
γ _{M2} =	1,25	Coefficient de sécurité partiel	[2.2]
үмз =	1,10	Coefficient de sécurité partiel	[2.2]

EFFORTS

Etat limite:	ultime		
Cas:	19: ELU /	337/ 1*1.35	+ 2*1.35 + 3*1.35 + 59*1.35 + 52*1.35 + 54*1.35
$M_{b1,Ed} =$	213,44	[kN*m]	Moment fléchissant dans la poutre droite
$V_{b1,Ed} =$	113,99	[kN]	Effort tranchant dans la poutre droite
$N_{b1,Ed} =$	-65,27	[kN]	Effort axial dans la poutre droite
$M_{c1,Ed} =$	-212,92	[kN*m]	Moment fléchissant dans la poteau inférieur
$V_{c1,Ed} =$	-60,82	[kN]	Effort tranchant dans le poteau inférieur
$N_{c1,Ed} =$	-111,59	[kN]	Effort axial dans le poteau inférieur

RESULTATS

RESISTANCES DE LA POUTRE

COMPRES	SSION			
A _b =	134,42	[cm ²]	Aire de la section	EN1993-1-1:[6.2.4]
$N_{cb,Rd} = A_b$	f _{yb} / γ _{M0}			
$N_{cb,Rd}$	3158,8	[kN	Résistance de calcul de la section à la	EN1993-1-
=	7]	compression	1:[6.2.4]
CISAILLE	MENT			
A _{vb} =	89,15	[cm ²]	Aire de la section au cisaillement	EN1993-1-1:[6.2.6.(3)]
$V_{cb,Rd} = A_v$	_o (f _{yb} / √3) / γι	VI0		
V _{cb,Rd} =	1209,5 0	[kN]	Résistance de calcul de la section au cisaillement	EN1993-1- 1:[6.2.6.(2)]
V _{b1,E}	$_{\rm d}$ / V _{cb,Rd} \leq 1,0	C	0,09 < 1,00 vérifié	(0,09)
FLEXION	- MOMENT	PLASTIQ	UE (SANS RENFORTS)	
$W_{plb} =$	2787,01	[cm ³]	Facteur plastique de la section	EN1993-1-1:[6.2.5.(2)]
$M_{b,pl,Rd} = V$	V _{plb} f _{yb} / γ _{M0}			
$M_{b,pl,R}$	654,	[kN*	Résistance plastique de la section à la flexion	EN1993-1-
d =	95	m]	(sans renforts)	1:[6.2.5.(2)]
FLEXION	AU CONTA	CT DE LA	PLAQUE AVEC L'ELEMENT ASSEMBLE	
$W_{pl} =$	3552 , 39	[cm ³]	Facteur plastique de la section	EN1993-1-1:[6.2.5]
$M_{cb,Rd} = W$	_{pl} f yb / γ _{M0}			
$M_{cb,Rd} =$	834,81	[kN*m] Résistance de calcul de la section à la flexion	EN1993-1-1:[6.2.5]
AILE ET A		IPRESSIC	N	
$M_{cb,Rd}$	834,8	[kN*m	Résistance de calcul de la section à la flexion	EN1993-1-
=	1]		1:[6.2.5]
h _f =	681	[mm]	Distance entre les centres de gravité des ailes	[6.2.6.7.(1)]
$F_{c,fb,Rd} = M$	_{cb,Rd} / h _f			
$F_{c,fb,Rd} =$	1225,40	[kN]	Résistance de l'aile et de l'âme comprimées	[6.2.6.7.(1)]
AME OU A	AILE DU RE	NFORT EN	N COMPRESSION - NIVEAU DE L'AILE INFERIEU	RE DE LA POUTRE
Pression c	liamétrale:			
β =	11,3	[De g]	Angle entre la platine d'about et la poutre	
	0.4.1	[De		

$\gamma =$	34,1	[De g]	Angle d'inclinaison du renfort	
b _{eff,c,wb}	289	[mm]	Largeur efficace de l'âme à la compression	[6.2.6.2.(1)]
A _{vb} =	72,3 5	[cm²]	Aire de la section au cisaillement	EN1993-1- 1:[6.2.6.(3)]
ω =	0,89		Coefficient réducteur pour l'interaction avec le cisaillement	[6.2.6.2.(1)]
σ _{com,Ed} =	79,2 1	[MP a]	Contrainte de compression maximale dans l'âme	[6.2.6.2.(2)]
k _{wc} =	1,00		Coefficient réducteur dû aux contraintes de compression	[6.2.6.2.(2)]

Pression diamétrale:

β =	11,3	[De g]	Angle entre la platine d'about et la pou	tre
A _s =	15,9 1	[cm²]	Aire de la section du raidisseur renforç	ant l'âme EN1993-1-1:[6.2.4]
$F_{c,wb,Rd1} = $	ω k _{wc} b _{eff,}	_{,c,wb} t _{wb} f _{yb}	$\gamma_{M0} + A_s f_{yb} / \gamma_{M0}] \cos(\gamma) / \sin(\gamma - \beta)$	
$F_{c,wb,Rd1} =$	2244	4,21	[kN] Résistance de l'âme de la poutre	e [6.2.6.2.(1)]
Flamberne	nt:			
d _{wb} =	468	[mm]	Hauteur de l'âme comprimée	[6.2.6.2.(1)]
$\lambda_p =$	1,0 3		Elancement de plaque	[6.2.6.2.(1)]
ρ =	0,7 8		Coefficient réducteur pour le flambement	t de [6.2.6.2.(1)]
$\lambda_s =$	7,5 1		Elancement du raidisseur	EN1993-1- 1:[6.3.1.2]
χ =	1,0 0		Coefficient de flambement du raidisseur	EN1993-1- 1:[6.3.1.2]
$F_{c,wb,Rd2} = $	[ω k _{wc} ρ b	_{eff,c,wb} t _{wb} f _y	$/ \gamma_{M1} + A_s \chi f_{yb} / \gamma_{M1}] \cos(\gamma) / \sin(\gamma - \beta)$	
$F_{c,wb,Rd2} =$	192	7 , 58	[kN] Résistance de l'âme de la poutre	e [6.2.6.2.(1)]
Résistance	e de l'aile	du renfort		
$F_{c,wb,Rd3} = 1$	b _b t _b f _{yb} / (0.8*γ _{M0})		
$F_{c,wb,Rd3} =$	1110	0,38	[kN] Résistance de l'aile du renfort	[6.2.6.7.(1)]
Résistance	e finale:			
F _{c,wb,Rd,low} =	= Min (F _{c,v}	wb,Rd1 , F _{c,w}	, _{Rd2} , F _{c,wb,Rd3})	
$F_{c,wb,Rd,low}$ =	= 11	10,38	[kN] Résistance de l'âme de la pou	tre [6.2.6.2.(1)]

RESISTANCES DU POTEAU

PANNEAU D'AME EN CISAILLEMENT

$M_{b1,Ed} =$	213,44	[kN*r	n] Moment fléchissant dans la poutre droite	[5.3.(3)]
$M_{b2,Ed} =$	0,00	[kN*r	n] Moment fléchissant dans la poutre gauche	[5.3.(3)]
$V_{c1,Ed} =$	-60,82	[kN]	Effort tranchant dans le poteau inférieur	[5.3.(3)]
$V_{c2,Ed} =$	0,00	[kN]	Effort tranchant dans le poteau supérieur	[5.3.(3)]
z =	578	[mm] Bras de levier	[6.2.5]
$V_{wp,Ed} = (M_b)$	1,Ed - M _{b2,Ed}) / z - (V _{c1}	_{,Ed} - V _{c2,Ed}) / 2	
$V_{wp,Ed} =$	399 , 47	[kN]	Panneau d'âme en cisaillement	[5.3.(3)]
A _{vs} =	50, 84	[cm²]	Aire de cisaillement de l'âme du poteau	EN1993-1- 1:[6.2.6.(3)]
A _{vc} =	50, 84	[cm²]	Aire de la section au cisaillement	EN1993-1- 1:[6.2.6.(3)]
d _s =	693	[mm]	Distance entre les centres de gravités des raidisseurs	[6.2.6.1.(4)]
M _{pl,fc,Rd}	2,3 8	[kN* m]	Résistance plastique de l'aile du poteau en flexion	[6.2.6.1.(4)]
M _{pl,stu,R} d =	0,7 1	[kN* m]	Résistance plastique du raidisseur transversal supérieur en flexion	[6.2.6.1.(4)]
M _{pl,stl,R} d =	0,7 1	[kN* m]	Résistance plastique du raidisseur transversal inférieur en flexion	[6.2.6.1.(4)]
$V_{wp,Rd} = 0.9$	(A _{vs} *f _{y,wc})	/ (√3 γ _{M0})	+ Min(4 M _{pl,fc,Rd} / d _s , (2 M _{pl,fc,Rd} + M _{pl,stu,Rd} + M _{pl,stl,Rd}) / d _s)	
V _{wp,Rd}	629 , 7 9	[kN]	Résistance du panneau d'âme au cisaillement	[6.2.6.1]
V _{wp,Ed}	$/V_{wp,Rd} \le 1$,0	0,63 < 1,00 vérifié	(0,63)

AME EN COMPRESSION TRANSVERSALE - NIVEAU DE L'AILE INFERIEURE DE LA POUTRE Pression diamétrale:

t _{wc} =	9	[mm]	Epaisseur efficace de l'âme du poteau	[6.2.6.2.(6)]
b _{eff,c,wc}	276	[mm]	Largeur efficace de l'âme à la compression	[6.2.6.2.(1)]
A _{vc} =	50,8	[cm ²	Aire de la section au cisaillement	EN1993-1-

t _{wc} =	9	[mm]	Epaisseur efficace de l'âme du poteau	[6.2.6.2.(6)]
	4]		1:[6.2.6.(3)]
ω =	0,86		Coefficient réducteur pour l'interaction avec le cisaillement	[6.2.6.2.(1)]
σ _{com,Ed} =	130, 81	[MP a]	Contrainte de compression maximale dans l'âme	[6.2.6.2.(2)]
k _{wc} =	1,00		Coefficient réducteur dû aux contraintes de compression	[6.2.6.2.(2)]
A _s =	14,4 5	[cm ²]	Aire de la section du raidisseur renforçant l'âme	EN1993-1-1:[6.2.4]
$F_{c,wc,Rd1} =$ $F_{c,wc,Rd1} =$ Flambem	: ω k _{wc} b _{eff,c,v} : 867, ent:	_{wc} t _{wc} f _{yc} / γ 22 [k	_{/M0} + A _s f _{ys} / γ _{M0} KN] Résistance de l'âme du poteau	[6.2.6.2.(1)]
d _{wc} =	379	[mm]	Hauteur de l'âme comprimée	[6.2.6.2.(1)]
$\lambda_p =$	1,0 7		Elancement de plaque	[6.2.6.2.(1)]
ρ =	0,7 6		Coefficient réducteur pour le flambement de l'élément	[6.2.6.2.(1)]
$\lambda_s =$	6,7 3		Elancement du raidisseur	EN1993-1- 1:[6.3.1.2]
χ _s =	1,0 0		Coefficient de flambement du raidisseur	EN1993-1- 1:[6.3.1.2]
$F_{c,wc,Rd2} = F_{c,wc,Rd2} =$: ω k _{wc} ρ b _{eff} 739,	, _{c,wc} t _{wc} f _{yc} 54 [k	/ γ _{M1} + A _s χ _s f _{ys} / γ _{M1} (N] Résistance de l'âme du poteau	[6.2.6.2.(1)]
Résistano	ce finale:	_		
F _{c,wc,Rd,low}	= Min (F _{c,w}	c,Rd1 , F _{c,wc}	;,Rd2) NI Pácistanco do l'âmo du potogu	[6 2 6 2 (1)]
AME EN	TRACTION	N TRANS	VERSALE - NIVEAU DE L'AILE INFERIEURE DE LA I	[0.2.0.2.(1)] OUTRE
Pression	diamétrale:			
t _{wc} =	9	[mm]	Epaisseur efficace de l'âme du poteau	[6.2.6.2.(6)]
b _{eff,c,wc}	272	[mm]	Largeur efficace de l'âme à la compression	[6.2.6.2.(1)]
A _{vc} =	50,8 4	[cm ²]	Aire de la section au cisaillement	EN1993-1- 1:[6.2.6.(3)]
ω =	0,87		Coefficient réducteur pour l'interaction avec le cisaillement	[6.2.6.2.(1)]
σ _{com,Ed}	130, 81	[MP al	Contrainte de compression maximale dans l'âme	[6.2.6.2.(2)]
k _{wc} =	1,00	~]	Coefficient réducteur dû aux contraintes de compression	[6.2.6.2.(2)]
A _s =	14,4 5	[cm ² 1	Aire de la section du raidisseur renforçant l'âme	EN1993-1-1:[6.2.4]
$F_{c,wc,Rd1} = F_{c,wc,Rd1} = Flambern$	w k _{wc} b _{eff,c,v} 861, ent:	_{vc} t _{wc} f _{yc} /γ 22 [k	_{/M0} + A _s f _{ys} / γ _{M0} KN] Résistance de l'âme du poteau	[6.2.6.2.(1)]
d _{wc} =	379	[mm]	Hauteur de l'âme comprimée	[6.2.6.2.(1)]
$\lambda_p =$	1,0 7		Elancement de plaque	[6.2.6.2.(1)]
ρ =	0,7 6		Coefficient réducteur pour le flambement de l'élément	[6.2.6.2.(1)]
λ. =	67		Elancement du raidisseur	EN1993-1-
70 <u>8</u> –	3			1:[6.3.1.2]
χ _s =	3 1,0 0		Coefficient de flambement du raidisseur	1:[6.3.1.2] EN1993-1- 1:[6.3.1.2]

Résistance finale:

 $\begin{aligned} F_{c,wc,Rd,upp} &= Min \; (F_{c,wc,Rd1} \;, \; F_{c,wc,Rd2}) \\ F_{c,wc,Rd,upp} &= \; 737 \;, \; 32 \qquad [kN] \end{aligned}$

Résistance de l'âme du poteau

[6.2.6.2.(1)]

PARAMETRES GEOMETRIQUES DE L'ASSEMBLAGE

LONGUEURS EFFICACES ET PARAMETRES - SEMELLE DU POTEAU

Nr	m	е	ex	р	I _{eff,cp}	I _{eff,nc}	I _{eff,1}	I _{eff,2}	l _{eff,cp,g}	l _{eff,nc,g}	l _{eff,1,g}	I _{eff,2,g}
1	14	60	-	125	85	108	85	108	167	106	106	106
2	14	60	-	120	85	129	85	129	240	120	120	120
3	14	60	-	115	85	129	85	129	230	115	115	115
4	14	60	-	108	85	129	85	129	215	108	108	108
5	14	60	-	113	85	129	85	129	225	113	113	113
6	14	60	-	125	85	108	85	108	167	106	106	106

LONGUEURS EFFICACES ET PARAMETRES - PLATINE D'ABOUT

Nr	m	mx	е	ex	р	l _{eff,cp}	leff,nc	leff,1	leff,2	l _{eff,cp,g}	leff,nc,g	l _{eff,1,g}	l _{eff,2,g}
1	18	-	70	-	125	114	145	114	145	182	128	128	128
2	18	-	70	-	120	114	160	114	160	240	120	120	120
3	18	-	70	-	115	114	160	114	160	230	115	115	115
4	18	-	70	-	108	114	160	114	160	215	108	108	108
5	18	-	70	-	113	114	160	114	160	225	113	113	113
6	18	_	70	-	125	114	160	114	160	182	143	143	143

m	 Distance du boulon de l'âme
m _x	 Distance du boulon de l'aile de la poutre
е	 Pince entre le boulon et le bord extérieur
ex	 Pince entre le boulon et le bord extérieur horizontal
р	 Entraxe des boulons
I _{eff,cp}	 Longueur efficace pour un boulon dans les mécanismes circulaires
I _{eff,nc}	 Longueur efficace pour un boulon dans les mécanismes non circulaires
l _{eff,1}	 Longueur efficace pour un boulon pour le mode 1
I _{eff,2}	 Longueur efficace pour un boulon pour le mode 2
I _{eff,cp,g}	 Longueur efficace pour un groupe de boulons dans les mécanismes circulaires
I _{eff,nc,g}	 Longueur efficace pour un groupe de boulons dans les mécanismes non circulaires
l _{eff,1,g}	 Longueur efficace pour un groupe de boulons pour le mode 1
I _{eff,2,g}	 Longueur efficace pour un groupe de boulons pour le mode 2

RESISTANCE DE L'ASSEMBLAGE A LA COMPRESSION

$N_{j,Rd} = Min$	(N _{cb,Rd} 2 F _{c,wb}	, _{Rd,low} , 2 F _{c,}	_{wc,Rd,low} , 2 F _{c,wc,Rd,upp})		
N _{j,Rd} =	1474,64	[kN]	Résistance de l'assemblage à	a la compression	[6.2]
N _{b1,E}	_d / N _{j,Rd} ≤ 1,0		0,04 < 1,00	vérifié	(0,04)

RESISTANCE DE L'ASSEMBLAGE A LA FLEXION

F _{t,Rd} =	176,4 0	[kN]	Résistance du boulon à la traction	[Tableau 3.4]			
$B_{p,Rd}$	241,0	[kN	Résistance du boulon au cisaillement au	[Tableau			
=	8]	poinçonnement	3.4]			
F _{t,fc,Rd}	 résista 	ance de la s	emelle du poteau à la flexion				
$F_{t,wc,Rd}$	 résista 	ance de l'ân	ne du poteau à la traction				
F _{t,ep,Rd}	 résista 	ance de la p	latine fléchie à la flexion				
$F_{t,wb,Rd}$	 résista 	ance de l'ân	ne à la traction				
$F_{t,\text{fc},\text{Rd}} = Min$	(F _{T,1,fc,Rd} ,	, $F_{T,2,fc,Rd}$, F	T,3,fc,Rd)	[6.2.6.4] , [Tab.6.2]			
$F_{t,wc,Rd} = \omega b_e$	_{eff,t,wc} t _{wc} f	_{yc} / γ _{M0}		[6.2.6.3.(1)]			
$F_{t,ep,Rd} = Min (F_{T,1,ep,Rd}, F_{T,2,ep,Rd}, F_{T,3,ep,Rd}) $ [6.2.6.5], [Tab.6.2							
$F_{t,wb,Rd} = b_{eff,t,wb} t_{wb} f_{yb} / \gamma_{M0} $ [6.2.6.8.(1)							
RESISTANCE DE LA RANGEE DE BOULONS N° 1							

Ft1,Rd,comp - Formule	Ft1,Rd,comp	Composant
$F_{t1,Rd} = Min (F_{t1,Rd,comp})$	184,45	Résistance d'une rangée de boulon
$F_{t,fc,Rd(1)} = 285,05$	285,05	Aile du poteau - traction
$F_{t,wc,Rd(1)} = 184,45$	184,45	Ame du poteau - traction
$F_{t,ep,Rd(1)} = 352,80$	352,80	Platine d'about - traction
$F_{t,wb,Rd(1)} = 297,25$	297,25	Ame de la poutre - traction
$B_{p,Rd} = 482,16$	482,16	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/\beta = 629,79$	629,79	Panneau d'âme - compression
$F_{c,wc,Rd} = 739,54$	739,54	Ame du poteau - compression
$F_{c,fb,Rd} = 1225,40$	1225,40	Aile de la poutre - compression
F _{c,wb,Rd} = 1110,38	1110,38	Ame de la poutre - compression

RESISTANCE DE LA RANGEE DE BOULONS N° 2

Ft2,Rd,comp - Formule	F _{t2,Rd,comp}	Composant
$F_{t2,Rd} = Min (F_{t2,Rd,comp})$	184,45	Résistance d'une rangée de boulon
$F_{t,fc,Rd(2)} = 302,37$	302,37	Aile du poteau - traction
$F_{t,wc,Rd(2)} = 184,45$	184,45	Ame du poteau - traction
$F_{t,ep,Rd(2)} = 352,80$	352,80	Platine d'about - traction
F _{t,wb,Rd(2)} = 297,25	297,25	Ame de la poutre - traction
B _{p,Rd} = 482,16	482,16	Boulons au cisaillement/poinçonnement
V _{wp,Rd} /β - ∑ ₁ ¹ F _{ti,Rd} = 629,79 - 184,45	445,34	Panneau d'âme - compression
$F_{c,wc,Rd}$ - $\sum_{1}^{1} F_{tj,Rd}$ = 739,54 - 184,45	555 , 09	Ame du poteau - compression
$F_{c,fb,Rd}$ - $\sum_{1}^{1} F_{tj,Rd}$ = 1225,40 - 184,45	1040,95	Aile de la poutre - compression
$F_{c,wb,Rd}$ - $\sum_{1}^{1} F_{tj,Rd}$ = 1110,38 - 184,45	925,93	Ame de la poutre - compression
$F_{t,fc,Rd(2 + 1)}$ - $\sum_{1}^{1} F_{tj,Rd}$ = 578,35 - 184,45	393,90	Aile du poteau - traction - groupe
$F_{t,wc,Rd(2+1)}$ - $\sum_{1}^{1} F_{tj,Rd}$ = 450,70 - 184,45	266,25	Ame du poteau - traction - groupe
$F_{t,ep,Rd(2 + 1)} - \sum_{1}^{1} F_{tj,Rd} = 677,14 - 184,45$	492,69	Platine d'about - traction - groupe
$F_{t,wb,Rd(2+1)}$ - $\sum_{1}^{1} F_{tj,Rd} = 645,78$ - 184,45	461,33	Ame de la poutre - traction - groupe

Réduction supplémentaire de la résistance d'une rangée de boulons

$F_{t2,Rd} = F_{t1,Rd} \ h_2 / h_1$

 $F_{t2,Rd} = 148, 47$ [kN] Résistance réduite d'une rangée de boulon

[6.2.7.2.(9)]

RESISTANCE DE LA RANGEE DE BOULONS N° 3

Ft3,Rd,comp - Formule	Ft3,Rd,comp	Composant
$F_{t3,Rd} = Min (F_{t3,Rd,comp})$	184,45	Résistance d'une rangée de boulon
$F_{t,fc,Rd(3)} = 302,37$	302,37	Aile du poteau - traction
$F_{t,wc,Rd(3)} = 184,45$	184,45	Ame du poteau - traction
$F_{t,ep,Rd(3)} = 352,80$	352,80	Platine d'about - traction
$F_{t,wb,Rd(3)} = 297,25$	297,25	Ame de la poutre - traction
$B_{p,Rd} = 482,16$	482,16	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/\beta - \sum_{1}^{2} F_{ti,Rd} = 629,79 - 332,92$	296,87	Panneau d'âme - compression
$F_{c,wc,Rd} - \sum_{1}^{2} F_{tj,Rd} = 739,54 - 332,92$	406,62	Ame du poteau - compression
$F_{c,fb,Rd}$ - $\sum_{1}^{2} F_{tj,Rd}$ = 1225,40 - 332,92	892,48	Aile de la poutre - compression
$F_{c,wb,Rd}$ - $\sum_{1}^{2} F_{tj,Rd}$ = 1110,38 - 332,92	777,46	Ame de la poutre - compression
$F_{t,fc,Rd(3+2)}$ - $\sum_{2}^{2} F_{tj,Rd}$ = 585,77 - 148,47	437,30	Aile du poteau - traction - groupe
$F_{t,wc,Rd(3+2)}$ - $\sum_{2}^{2} F_{tj,Rd}$ = 465,17 - 148,47	316,70	Ame du poteau - traction - groupe
$F_{t,fc,Rd(3+2+1)}$ - $\sum_{2}^{1} F_{tj,Rd}$ = 869,18 - 332,92	536,26	Aile du poteau - traction - groupe
$F_{t,wc,Rd(3+2+1)}$ - $\sum_{2}^{1} F_{tj,Rd}$ = 611,65 - 332,92	278,73	Ame du poteau - traction - groupe
$F_{t,ep,Rd(3+2)}$ - $\sum_{2}^{2} F_{tj,Rd}$ = 662,67 - 148,47	514,20	Platine d'about - traction - groupe
$F_{t,wb,Rd(3+2)}$ - $\sum_{2}^{2} F_{tj,Rd}$ = 613,00 - 148,47	464,53	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(3+2+1)}$ - $\sum_{2}^{1} F_{tj,Rd}$ = 1005,60 - 332,92	672,68	Platine d'about - traction - groupe
$F_{t,wb,Rd(3+2+1)}$ - $\sum_{2}^{1} F_{tj,Rd}$ = 945,76 - 332,92	612,84	Ame de la poutre - traction - groupe

Réduction supplémentaire de la résistance d'une rangée de boulons

 $F_{t3,Rd} = F_{t1,Rd} h_3/h_1$

F _{t3,Rd} =	115,37	[kN]	Résistance réduite d'une rangée de boulon	[6.2.7.2.(9)]
$F_{t3,Rd} = F_{t2,R}$	_d h ₃ /h ₂			

F _{t3,Rd} =	115 , 37	[kN]	Résistance réduite d'une rangée de boulon
RESISTAN	CE DE LA F	RANGEE	DE BOULONS N° 4

[6.2.7.2.(9)]FRA

F _{t4,Rd,comp} - Formule	F _{t4,Rd,comp}	Composant
$F_{t4,Rd} = Min (F_{t4,Rd,comp})$	181,50	Résistance d'une rangée de boulon
$F_{t,fc,Rd(4)} = 302,37$	302,37	Aile du poteau – traction
$F_{t,wc,Rd(4)} = 184,45$	184,45	Ame du poteau – traction
$F_{t,ep,Rd(4)} = 352,80$	352,80	Platine d'about – traction
$F_{t,wb,Rd(4)} = 297,25$	297,25	Ame de la poutre – traction
$B_{p,Rd} = 482,16$	482,16	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/\beta - \sum_{1}{}^{3}F_{ti,Rd} = 629,79 - 448,29$	181,50	Panneau d'âme – compression
$F_{c,wc,Rd} - \sum_{1}^{3} F_{tj,Rd} = 739,54 - 448,29$	291,25	Ame du poteau – compression
F _{c,fb,Rd} - ∑1 ³ F _{tj,Rd} = 1225,40 - 448,29	777,11	Aile de la poutre – compression
F _{c,wb,Rd} - ∑ ₁ ³ F _{tj,Rd} = 1110,38 - 448,29	662,09	Ame de la poutre – compression
$F_{t,fc,Rd(4+3)}$ - $\sum_{3}^{3} F_{tj,Rd}$ = 575,47 - 115,37	460,10	Aile du poteau - traction – groupe
$F_{t,wc,Rd(4+3)}$ - $\sum_{3}^{3} F_{tj,Rd}$ = 444,99 - 115,37	329,62	Ame du poteau - traction – groupe
$F_{t,fc,Rd(4+3+2)}$ - $\sum_{3}^{2} F_{tj,Rd}$ = 870,42 - 263,84	606 , 57	Aile du poteau - traction – groupe
$F_{t,wc,Rd(4+3+2)}$ - $\sum_{3}^{2} F_{tj,Rd}$ = 613,42 - 263,84	349,58	Ame du poteau - traction – groupe
$F_{t,fc,Rd(4+3+2+1)} - \sum_{3}^{1} F_{tj,Rd} = 1153,82 - 448,29$	705 , 53	Aile du poteau - traction - groupe
$F_{t,wc,Rd(4+3+2+1)} - \sum_{3}^{1} F_{tj,Rd} = 719,93 - 448,29$	271,64	Ame du poteau - traction – groupe
$F_{t,ep,Rd(4+3)}$ - $\sum_{3}^{3} F_{tj,Rd}$ = 648,27 - 115,37	532 , 90	Platine d'about - traction – groupe
$F_{t,wb,Rd(4+3)}$ - $\sum_{3}^{3} F_{tj,Rd}$ = 580,39 - 115,37	465,02	Ame de la poutre - traction – groupe
$F_{t,ep,Rd(4+3+2)}$ - $\sum_{3}^{2} F_{tj,Rd} = 982,48$ - 263,84	718,64	Platine d'about - traction – groupe
$F_{t,wb,Rd(4+3+2)}$ - $\sum_{3}^{2} F_{tj,Rd}$ = 893,41 - 263,84	629,57	Ame de la poutre - traction – groupe
$F_{t,ep,Rd(4+3+2+1)} - \sum_{3}^{1} F_{tj,Rd} = 1325,41 - 448,29$	877,12	Platine d'about - traction – groupe
$F_{t,wb,Rd(4+3+2+1)}$ - $\sum_{3}^{1}F_{tj,Rd}$ = 1226,17 - 448,29	777,88	Ame de la poutre - traction – groupe

 $F_{t4,Rd} = F_{t1,Rd} h_4/h_1$

 $F_{t4,Rd} =$

$F_{t4,Rd} =$	82,27	[kN]	Résistance réduite d'une rangée de boulon	[6.2.7.2.(9)]
$F_{t4,Rd}=F_{t2,R}$	_d h₄/h₂			

-_{t2,Rd} n₄/n₂ 82**,** 27 [kN] Résistance réduite d'une rangée de boulon RESISTANCE DE LA RANGEE DE BOULONS N° 5

Ft5,Rd,comp - Formule	Ft5,Rd,comp	Composant
F _{t5,Rd} = Min (F _{t5,Rd,comp})	99,23	Résistance d'une rangée de boulon
$F_{t,fc,Rd(5)} = 302,37$	302,37	Aile du poteau - traction
$F_{t,wc,Rd(5)} = 184,45$	184,45	Ame du poteau - traction
$F_{t,ep,Rd(5)} = 352,80$	352,80	Platine d'about - traction
$F_{t,wb,Rd(5)} = 297,25$	297,25	Ame de la poutre - traction
B _{p,Rd} = 482,16	482,16	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/\beta$ - $\sum_{1}^{4} F_{ti,Rd}$ = 629,79 - 530,56	99,23	Panneau d'âme - compression
F _{c,wc,Rd} - ∑1 ⁴ F _{tj,Rd} = 739,54 - 530,56	208,98	Ame du poteau - compression
$F_{c,fb,Rd}$ - $\sum_{1}^{4} F_{tj,Rd}$ = 1225,40 - 530,56	694,84	Aile de la poutre - compression
F _{c,wb,Rd} - ∑1 ⁴ F _{tj,Rd} = 1110,38 - 530,56	579 , 82	Ame de la poutre - compression
$F_{t,fc,Rd(5+4)}$ - $\sum_{4}^{4} F_{tj,Rd}$ = 573,41 - 82,27	491,14	Aile du poteau - traction - groupe
$F_{t,wc,Rd(5+4)}$ - $\sum_{4}^{4} F_{tj,Rd}$ = 440,88 - 82,27	358,61	Ame du poteau - traction - groupe
$F_{t,fc,Rd(5+4+3)}$ - $\sum_{4^{3}} F_{tj,Rd}$ = 864,23 - 197,64	666,59	Aile du poteau - traction - groupe
$F_{t,wc,Rd(5+4+3)}$ - $\sum_{4}^{3} F_{tj,Rd} = 604,49$ - 197,64	406,85	Ame du poteau - traction - groupe
$F_{t,fc,Rd(5 + 4 + 3 + 2)} - \sum_{4}^{2} F_{tj,Rd} = 1159,18 - 346,11$	813,07	Aile du poteau - traction - groupe
$F_{t,wc,Rd(5+4+3+2)}$ - $\sum_{4}^{2} F_{tj,Rd}$ = 725,39 - 346,11	379,28	Ame du poteau - traction - groupe
$F_{t,fc,Rd(5+4+3+2+1)} - \sum_{4}^{1} F_{tj,Rd} = 1442,58 - 530,56$	912,02	Aile du poteau - traction - groupe

[6.2.7.2.(9)]FRA

Ft5,Rd,comp - Formule	Ft5,Rd,comp	Composant
$F_{t,wc,Rd(5+4+3+2+1)} - \sum_{4}^{1} F_{tj,Rd} = 800,19 - 530,56$	269,64	Ame du poteau - traction - groupe
$F_{t,ep,Rd(5+4)}$ - $\sum_{4}^{4} F_{tj,Rd}$ = 645,39 - 82,27	563,12	Platine d'about - traction - groupe
$F_{t,wb,Rd(5+4)}$ - $\sum_{4}^{4} F_{tj,Rd}$ = 573,87 - 82,27	491,60	Ame de la poutre - traction - groupe
F _{t,ep,Rd(5 + 4 + 3)} - ∑4 ³ F _{tj,Rd} = 973,84 - 197,64	776,20	Platine d'about - traction - groupe
$F_{t,wb,Rd(5+4+3)}$ - $\sum_{4}{}^{3}F_{tj,Rd}$ = 873,85 - 197,64	676,21	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(5+4+3+2)}$ - $\sum_{4}^{2} F_{tj,Rd}$ = 1308,06 - 346,11	961,95	Platine d'about - traction - groupe
$F_{t,wb,Rd(5+4+3+2)}$ - $\sum_{4}^{2} F_{tj,Rd}$ = 1186,87 - 346,11	840,76	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(5+4+3+2+1)} - \sum_{4}^{1} F_{ij,Rd} = 1650,99 - 530,56$	1120,43	Platine d'about - traction - groupe
$F_{t,wb,Rd(5+4+3+2+1)} - \sum_{4}^{1} F_{ij,Rd} = 1519,63 - 530,56$	989 , 07	Ame de la poutre - traction - groupe

 $F_{t5,Rd} = F_{t1,Rd} h_5/h_1$

53,49 $F_{t5,Rd} =$

 $F_{t5,Rd} = F_{t2,Rd} h_5/h_2$

Résistance réduite d'une rangée de boulon

[6.2.7.2.(9)]

 $F_{t5,Rd} =$ 53,49

[kN] Résistance réduite d'une rangée de boulon [6.2.7.2.(9)]FRA

RESISTANCE DE LA RANGEE DE BOULONS N° 6

[kN]

Ft6,Rd,comp - Formule	Ft6,Rd,comp	Composant
$F_{t6,Rd} = Min (F_{t6,Rd,comp})$	45,74	Résistance d'une rangée de boulon
$F_{t,fc,Rd(6)} = 285,05$	285,05	Aile du poteau - traction
$F_{t,wc,Rd(6)} = 184,45$	184,45	Ame du poteau - traction
$F_{t,ep,Rd(6)} = 352,80$	352,80	Platine d'about - traction
$F_{t,wb,Rd(6)} = 297,25$	297,25	Ame de la poutre - traction
B _{p,Rd} = 482,16	482,16	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/\beta$ - $\sum_{1}{}^{5}$ F _{ti,Rd} = 629,79 - 584,05	45,74	Panneau d'âme - compression
$F_{c,wc,Rd}$ - $\sum_{1}{}^{5}F_{tj,Rd}$ = 739,54 - 584,05	155,49	Ame du poteau - compression
$F_{c,fb,Rd}$ - $\sum_{1}^{5} F_{tj,Rd}$ = 1225,40 - 584,05	641,35	Aile de la poutre - compression
$F_{c,wb,Rd}$ - $\sum_{1}{}^{5} F_{tj,Rd}$ = 1110,38 - 584,05	526 , 33	Ame de la poutre - compression
$F_{t,fc,Rd(6+5)}$ - $\sum_{5}{}^{5}F_{tj,Rd}$ = 572,17 - 53,49	518,68	Aile du poteau - traction - groupe
$F_{t,wc,Rd(6+5)}$ - $\sum_{5}^{5} F_{tj,Rd}$ = 438,40 - 53,49	384,91	Ame du poteau - traction - groupe
$F_{t,fc,Rd(6+5+4)}$ - $\sum_{5}^{4} F_{tj,Rd}$ = 856,81 - 135,76	721,05	Aile du poteau - traction - groupe
$F_{t,wc,Rd(6+5+4)}$ - $\sum_{5}^{4} F_{tj,Rd}$ = 593,51 - 135,76	457,75	Ame du poteau - traction - groupe
$F_{t,fc,Rd(6+5+4+3)}$ - $\sum_{5}^{3} F_{tj,Rd}$ = 1147,64 - 251,13	896,51	Aile du poteau - traction - groupe
$F_{t,wc,Rd(6+5+4+3)}$ - $\sum_{5}^{3} F_{tj,Rd}$ = 713,50 - 251,13	462,37	Ame du poteau - traction - groupe
$F_{t,fc,Rd(6+5+4+3+2)}$ - $\sum_{5}^{2}F_{tj,Rd}$ = 1442,58 - 399,60	1042,99	Aile du poteau - traction - groupe
$F_{t,wc,Rd(6+5+4+3+2)}$ - $\sum_{5}^{2} F_{tj,Rd} = 800,19$ - 399,60	400,60	Ame du poteau - traction - groupe
$F_{t,fc,Rd(6+5+4+3+2+1)}$ - $\sum_{5}^{1}F_{tj,Rd}$ = 1725,99 - 584,05	1141,94	Aile du poteau - traction - groupe
$F_{t,wc,Rd(6+5+4+3+2+1)}$ - \sum_{5}^{1} $F_{tj,Rd}$ = 853,98 - 584,05	269,93	Ame du poteau - traction - groupe
$F_{t,ep,Rd(6+5)}$ - $\sum_{5}^{5} F_{tj,Rd}$ = 685,73 - 53,49	632,24	Platine d'about - traction - groupe
$F_{t,wb,Rd(6+5)}$ - $\sum_{5}^{5} F_{tj,Rd}$ = 665,23 - 53,49	611,74	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(6+5+4)}$ - $\sum_{5}^{4} F_{tj,Rd}$ = 1005,54 - 135,76	869,79	Platine d'about - traction - groupe
$F_{t,wb,Rd(6+5+4)}$ - $\sum_{5}^{4} F_{tj,Rd}$ = 945,64 - 135,76	809,88	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(6+5+4+3)}$ - $\sum_{5}^{3} F_{tj,Rd}$ = 1334,00 - 251,13	1082,87	Platine d'about - traction - groupe
$F_{t,wb,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1245,62 - 251,13$	994,49	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1668,21$ -	1268,61	Platine d'about - traction - groupe

Ft6,Rd,comp - Formule	Ft6,Rd,comp	Composant
399,60		
$F_{t,wb,Rd(6+5+4+3+2)}$ - $\sum_{5}^{2}F_{tj,Rd}$ = 1558,64 - 399,60	1159 , 04	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(6 + 5 + 4 + 3 + 2 + 1)}$ - $\sum_{5}^{1} F_{tj,Rd}$ = 2011,14 - 584,05	1427,09	Platine d'about - traction - groupe
$F_{t,wb,Rd(6+5+4+3+2+1)}$ - $\sum_{5}^{1}F_{tj,Rd}$ = 1891,40 - 584,05	1307,35	Ame de la poutre - traction - groupe
584,05		groupe

 $F_{t6,Rd} = F_{t1,Rd} h_6/h_1$

TABLEA	U RECAPITU	JLATIF D	ES EFFORTS	
$F_{t6,Rd} =$	17,51	[kN]	Résistance réduite d'une rangée de boulon	[6.2.7.2.(9)]FRA
$F_{t6,Rd} = F_t$	_{2,Rd} h ₆ /h ₂			
$F_{t6,Rd} =$	17,51	[kN]	Résistance réduite d'une rangée de boulon	[6.2.7.2.(9)]

r	hj	F _{tj,Rd}	F _{t,fc,Rd}	F _{t,wc,Rd}	F _{t,ep,Rd}	$\mathbf{F}_{t,wb,Rd}$	F _{t,Rd}	B _{p,Rd}
1	641	184,45	285,05	184,45	352,80	297,25	352,80	482,16
2	516	148,47	302,37	184,45	352,80	297,25	352,80	482,16
3	401	115,37	302,37	184,45	352,80	297,25	352,80	482,16
4	286	82,27	302,37	184,45	352,80	297,25	352,80	482,16
5	186	53,49	302,37	184,45	352,80	297,25	352,80	482,16
6	61	17,51	285,05	184,45	352,80	297,25	352,80	482,16

RESISTANCE DE L'ASSEMBLAGE A LA FLEXION M_{j,Rd}

 $M_{j,Rd} = \sum h_j F_{tj,Rd}$

M _{j,Rd} =	275 , 55	[kN*m]	Résistance de l'assemblage à	[6.2]	
M _{b1,Ed} /	′ M _{i,Rd} ≤ 1,0		0,77 < 1,00	vérifié	(0,77)

RESISTANCE DE L'ASSEMBLAGE AU CISAILLEMENT

$\alpha_v =$	0,60		Coefficient pour le calcul de F _{v,Rd}	[Tableau 3.4]
$\beta_{Lf} =$	0,93		Coefficient réducteur pour les assemblages longs	[3.8]
F _{v,Rd} =	140,2 4	[kN]	Résistance d'un boulon au cisaillement	[Tableau 3.4]
F _{t,Rd,max}	176,4 0	[kN]	Résistance d'un boulon à la traction	[Tableau 3.4]
$F_{b,Rd,int} =$	213,1 6	[kN]	Résistance du boulon intérieur en pression diamétrale	[Tableau 3.4]
F _{b,Rd,ext} =	191,2 0	[kN]	Résistance du boulon de rive en pression diamétrale	[Tableau 3.4]

N r	F _{tj,Rd,N}	$\mathbf{F}_{tj, Ed, N}$	F tj,Rd,M	$\mathbf{F}_{tj,Ed,M}$	$\mathbf{F}_{tj,Ed}$	F vj,Rd
1	352,80	-10,88	184,45	142,87	132,00	205,52
2	352,80	-10,88	148,47	115,01	104,13	221,35
3	352,80	-10,88	115 , 37	89,37	78,49	235,91
4	352,80	-10,88	82,27	63,73	52,85	250,47
5	352,80	-10,88	53,49	41,43	30,55	263,13
6	352,80	-10,88	17,51	13,56	2,68	278,96

 $F_{tj,Rd,N} \qquad - \mbox{R}\acute{e}sistance \ d'une \ rangée \ de \ boulons \ a \ la \ traction \ pure$

F_{tj,Ed,N} – Effort dans une rangée de boulons dû à l'effort axial

F_{tj,Rd,M} – Résistance d'une rangée de boulons à la flexion pure

F_{tj,Ed,M} – Effort dans une rangée de boulons dû au moment

 $F_{tj,Ed} \qquad \qquad - \ \text{Effort de traction maximal dans la rangée de boulons}$

F_{vj,Rd} – Résistance réduite d'une rangée de boulon

 $F_{tj,Ed,N} = N_{j,Ed} F_{tj,Rd,N} / N_{j,Rd}$

 $F_{tj,Ed,M} = M_{j,Ed} \; F_{tj,Rd,M} \; / \; M_{j,Rd}$

 $F_{tj,Ed} = F_{tj,Ed,N} + F_{tj,Ed,M}$

$F_{tj,Ed,N} = N_j$ $F_{vj,Rd} = Mir$	_{i,Ed} F _{tj,Rd,N} / N _{j,Rd} n (n _h F _{v,Ed} (1 - F _{tj,}	_{Ed} / (1.4 n _h	F _{t.Rd.max}), n _h F _{v.Rd} , n _h F _{b.Rd}))		
$V_{i,Rd} = n_h \Sigma$	[™] F _{vi.Rd}	·			[Tableau 3.4]
$V_{j,Rd} =$	1455,35	[kN]	Résistance de l'assemblage au	cisaillement	[Tableau 3.4]
V _{b1,E}	_d / V _{j,Rd} ≤ 1,0		0,08 < 1,00	vérifié	(0,08)
RESISTA	NCE DES SOU	DURES			
A _w =	204,54	[cm²]	Aire de toutes les soudures		[4.5.3.2(2)]
A _{wy} =	85,51	[cm²]	Aire des soudures horizontales		[4.5.3.2(2)]
A _{wz} =	119,03	[cm²]	Aire des soudures verticales		[4.5.3.2(2)]
$I_{wy} =$	98509, 17	[cm⁴]	Moment d'inertie du système de l'axe horiz.	soudures par rapport à	[4.5.3.2(5)]
σ _{⊥max} =τ _{⊥ma}	ax 56,84	[MP a]	Contrainte normale dans la souc	lure	[4.5.3.2(6)]
σ⊥=τ⊥ =	53 , 99	[MP a]	Contraintes dans la soudure ver	ticale	[4.5.3.2(5)]
τ _{II} =	9,58	[MP a]	Contrainte tangentielle		[4.5.3.2(5)]
$\beta_w =$	0,80		Coefficient de corrélation		[4.5.3.2(7)]
√[σ⊥max	$x^{2} + 3^{*}(\tau_{\perp max}^{2})] \leq$	f _u /(β _w *γ _{M2})	113,68 < 365,00	vérifié	(0,31)
√[σ⊥² +	$-3^*(\tau_{\perp}^2 + \tau_{\parallel}^2)] \le f_{\mu}$	/(β _w *γ _{M2})	109,25 < 365,00	vérifié	(0,30)

RIGIDITE DE L'ASSEMBLAGE

 $\sigma_{\perp} \leq 0.9^* f_u / \gamma_{M2}$

t _{wash} =	4	[mm]	Epaisseur de la plaquette	[6.2.6.3.(2)]
h _{head} =	14	[mm]	Hauteur de la tête du boulon	[6.2.6.3.(2)]
h _{nut} =	20	[mm]	Hauteur de l'écrou du boulon	[6.2.6.3.(2)]
$L_b =$	60	[mm]	Longueur du boulon	[6.2.6.3.(2)]
k ₁₀ =	7	[mm]	Coefficient de rigidité des boulons	[6.3.2.(1)]

56,84 < 262,80

vérifié

RIGIDITES DES RANGEES DE BOULONS

Nr	hj	k ₃	k 4	k 5	k _{eff,j}	k _{eff,j} h _j	k _{eff,j} hj²
					Somme	22,63	1036,47
1	641	1	97	138	1	6,94	444,63
2	516	1	97	138	1	5,58	288,09
3	401	1	97	138	1	4,34	173 , 95
4	286	1	97	130	1	3,09	88,41
5	186	1	97	136	1	2,01	37,38
6	61	1	97	138	1	0,66	4,01

k _{eff,j} = 1 /	$k_{\text{eff},j} = 1 / (\sum_{3}^{5} (1 / k_{i,j})) $ [6.3.3.1.(2)]						
z _{eq} = ∑ _j I	k _{eff,j} h _j ² /	∑ _j k _{eff,j} h _j					
$z_{eq} =$	458	[mm]	Bras de levier équivalent	[6.3.3.1.(3)]			
k _{eq} = ∑ _j I	k _{eff,j} h _j ∕	Z _{eq}					
k _{eq} =	5	[mm]	Coefficient de rigidité équivalent du système de boulons	[6.3.3.1.(1)]			
A _{vc} =	50, 84	[c m²]	Aire de la section au cisaillement	EN1993-1- 1:[6.2.6.(3)]			
β =	1,0 0		Paramètre de transformation	[5.3.(7)]			
Z =	458	[m m]	Bras de levier	[6.2.5]			
k₁ =	4	[m m]	Coefficient de rigidité du panneau d'âme du poteau en cisaillement	[6.3.2.(1)]			
k ₂ =	∞		Coefficient de rigidité du panneau d'âme du poteau en compression	[6.3.2.(1)]			

(0,22)

$S_{j,ini} = E Z_{eq}^{2} / \sum_{i} (1 / k_{1} + 1 / k_{2} + 1 / k_{eq}) $ [6.3.1.(4)]					
S _{j,ini} =	100252,98	[kN*m]	Rigidité en rotation initiale	[6.3.1.(4)]	
μ=	1,50	Coeffic	ient de rigidité de l'assemblage	[6.3.1.(6)]	
$S_j = S_{j,ini}$	i/μ			[6.3.1.(4)]	
S _j =	66855 , 75	[kN*m]	Rigidité en rotation finale	[6.3.1.(4)]	
Classification de l'assemblage par rigidité.					
S _{j,rig} =	138207,60	[kN*m]	Rigidité de l'assemblage rigide	[5.2.2.5]	
S _{j,pin} =	8637,98	[kN*m]	Rigidité de l'assemblage articulé	[5.2.2.5]	
S _{j,pin} ≤ S _{j,ini} < S _{j,rig} SEMI-RIGIDE					

COMPOSANT LE PLUS FAIBLE:

PANNEAU D'AME DU POTEAU EN CISAILLEMENT

Assemblage satisfaisant vis à vis de la Norme	Ratio	0,77
---	-------	------

GENERAL

Assemblage N°:	3
Nom de l'assemblage :	Pied de poteau encastré
Noeud de la structure:	17
Barres de la structure:	28

GEOMETRIE

Poteau

2020-2021

Profilé:			IPE 450
Barre N°:			28
$L_c =$	6,00	[m]	Longueur du poteau
α =	0,0	[Deg]	Angle d'inclinaison
h _c =	450	[mm]	Hauteur de la section du poteau
b _{fc} =	190	[mm]	Largeur de la section du poteau
t _{wc} =	9	[mm]	Epaisseur de l'âme de la section du poteau
t _{fc} =	15	[mm]	Epaisseur de l'aile de la section du poteau
r _c =	21	[mm]	Rayon de congé de la section du poteau
$A_c =$	98,82	[cm ²]	Aire de la section du poteau
I _{yc} =	33742,90	[cm ⁴]	Moment d'inertie de la section du poteau
Matériau:	ACI	ER E24	
f _{yc} =	235,00	[MPa]	Résistance
$f_{uc} =$	365,00	[MPa]	Résistance ultime du matériau

PLATINE DE PRESCELLEMENT

I _{pd} =	900	[mm]	Longueur		
b _{pd} =	380	[mm]	Largeur		
t _{pd} =	30	[mm]	Epaisseur		
Matériau:		AC	ier e24		
f _{ypd} =			235,00	[MPa]	Résistance
$f_{upd} =$			365,00	[MPa]	Résistance ultime du matériau

ANCRAGE

Entraxe e_{Vi} =

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

90 [mm]

Classe =	4.6			Classe de tiges d'ancrage
f _{yb} =	240,00		[MPa]	Limite de plasticité du matériau du boulon
f _{ub} =	400,00		[MPa]	Résistance du matériau du boulon à la traction
d =	30		[mm]	Diamètre du boulon
A _s =	5,61		[cm ²]	Aire de la section efficace du boulon
$A_v =$	7,07		[cm ²]	Aire de la section du boulon
n _H =	2			Nombre de colonnes des boulons
n _v =	2			Nombre de rangéss des boulons
Ecartemen	t e _{Hi} =	600	[mm]	

Dimensions des tiges d'ancrage

		-	-
L ₁ =	60	[mm]	
L ₂ =	500	[mm]	
L ₃ =	180	[mm]	
L ₄ =	180	[mm]	
Platine			
$I_{wd} =$	60	[mm]	Longueur
b _{wd} =	60	[mm]	Largeur
t _{wd} =	10	[mm]	Epaisseur

BECHE

Profilé:	IPE 1	00			
I _w =	100	[mm]	Long	ueur	
Matériau:		ACIEF	R E24		
f _{yw} =		23	5,00	[MPa]	Résistance

RAIDISSEUR

l _s =	900	[mm]	Longueur
W _s =	380	[mm]	Largeur
h _s =	450	[mm]	Hauteur
t _s =	20	[mm]	Epaisseur

l _s =	900	[mm]	Longueur
d1 =	20	[mm]	Grugeage
d ₂ =	20	[mm]	Grugeage

COEFFICIENTS DE MATERIAU

γмо =	1,00	Coefficient de sécurité partiel
γ _{M2} =	1,25	Coefficient de sécurité partiel
γc =	1,50	Coefficient de sécurité partiel

SEMELLE ISOLEE

L =	1600	[mm]	Longueur de la semelle
B =	1400	[mm]	Largeur de la semelle
H =	600	[mm]	Hauteur de la semelle
Béton			
Classe			BETON25
$f_{ck} =$	25,00	[MPa]	Résistance caractéristique à la compression
Mortier	de calage		
t _g =	30	[mm]	Epaisseur du mortier de calage
$f_{ck,g} =$	12,00	[MPa]	Résistance caractéristique à la compression
$C_{f,d} =$	0,30		Coef. de frottement entre la plaque d'assise et le béton

SOUDURES

a _p =	10	[mm]	Plaque principale du pied de poteau
a _w =	10	[mm]	Bêche
a _s =	10	[mm]	Raidisseurs

EFFORTS

Cas:	19: ELU /391	/ 1*1.35	+ 2*1.35 + 59*1.35 + 24*1.35 + 52*1.35 + 54*1.35
$N_{j,Ed} =$	-126,24	[kN]	Effort axial
$V_{j,Ed,y} =$	9,46	[kN]	Effort tranchant
$V_{j,Ed,z} =$	73,27	[kN]	Effort tranchant
$M_{j,Ed,y} =$	-158,29	[kN*m]	Moment fléchissant
$M_{j,Ed,z} =$	2,66	[kN*m]	Moment fléchissant

RESULTATS

ZONE COMPRIMEE

COMPRESSION DU BETON

f _{cd} =	16, 67	[MP a]	Résistance de calcul à la compression	EN 1992- 1:[3.1.6.(1)]
$f_j =$	23, 04	[MP a]	Résistance de calcul du matériau du joint sous la plaque d'assise	[6.2.5.(7)]
$c = t_p \sqrt{1}$	(f _{yp} /(3*f _j *γ _{M0}))			
c =	55	[mm]	Largeur de l'appui additionnelle	[6.2.5.(4)]
b _{eff} =	125	[mm]	Largeur efficace de la semelle de tronçon T	[6.2.5.(3)]
l _{eff} =	301	[mm]	Longueur efficace de la semelle de tronçon en T	[6.2.5.(3)]
A _{c0} =	376 , 53	[cm ²]	Zone de contact de la plaque d'assise avec la fondation	EN 1992- 1:[6.7.(3)]
A _{c1}	3383,9	[cm ²	Aire de calcul maximale de la répartition de la	EN 1992-
=	7]	charge	1:[6.7.(3)]
$F_{rdu} = A$	A _{c0} *f _{cd} *√(A _{c1} //	$A_{c0}) \leq 3^*A_{c0}$	_{co} *f _{cd}	
F _{rdu} =	1881,3	2 [ki	N] Résistance du béton à l'appui rigide	EN 1992-1:[6.7.(3)]

F _{rdu} =	1881,32	[kN]	Résistance du béton à l'appui rigide	EN 1992-1:[6.7.(3)]
$\beta_j =$	0,67		Coefficient réducteur pour la compression	[6.2.5.(7)]
$f_{jd} = \beta_j^* F$	rdu/(b _{eff} *I _{eff})			
f _{jd} =	33,31 [M	IPa] Re	ésistance de calcul du matériau du joint	[6.2.5.(7)]
A _{c,n} =	2847,90	[cm ²]	Aire de compression efficace	[6.2.8.2.(1)]
A _{c,y} =	869,98	[cm ²]	Aire de flexion My	[6.2.8.3.(1)]
$A_{c,z} =$	1201,49	[cm ²]	Aire de flexion Mz	[6.2.8.3.(1)]
$F_{c,Rd,i} = I$	A _{C,i} *f _{jd}			
$F_{c,Rd,n} =$	9486,22	[kN]	Résistance du béton à la compression	[6.2.8.2.(1)]
$F_{c,Rd,y} =$	2897 , 85	[kN]	Résistance du béton à la flexion My	[6.2.8.3.(1)]
$F_{c,Rd,z} =$	4002,12	[kN]	Résistance du béton à la flexion Mz	[6.2.8.3.(1)]
AILE E	Г AME DU POT	EAU EN CO	OMPRESSION	
CL =	1,00		Classe de la section	EN 1993-1-1:[5.5.2]
W _{pl,y} =	9816,7 9	[cm ³]	Facteur plastique de la section	EN1993-1- 1:[6.2.5.(2)]
M _{c,Rd,y}	2306 , 9	[kN*m 1	Résistance de calcul de la section à la flexion	EN1993-1-1:[6.2.5]
h _{f,y} =	586	ر [mm]	Distance entre les centres de gravité des ailes	[6.2.6.7.(1)]
Fc fc Rd v	= M _{c Rd v} / h _{f v}			
F _{c,fc,Rd,y} :	= 3938,82	[kN]	Résistance de l'aile et de l'âme comprimées	[6.2.6.7.(1)]
$W_{pl,z} =$	4453,8 8	[cm ³]	Facteur plastique de la section	EN1993-1- 1:[6.2.5.(2)]
M _{c,Rd,z}	1046,6 6	[kN*m]	Résistance de calcul de la section à la flexion	EN1993-1-1:[6.2.5]
h _{f,z} =	213	[mm]	Distance entre les centres de gravité des ailes	[6.2.6.7.(1)]
F _{c,fc,Rd,z} :	= M _{c,Rd,z} / h _{f,z}			
F _{c,fc,Rd,z} :	= 4908,92	[kN]	Résistance de l'aile et de l'âme comprimées	[6.2.6.7.(1)]
RESIST	ANCE DE LA SI	EMELLE D	ANS LA ZONE COMPRIMEE	
$N_{j,Rd} = F$	c,Rd,n			
N _{j,Rd} =	9486,22	[kN]	Résistance de la semelle à l'effort axial	[6.2.8.2.(1)]
$F_{C,Rd,y} =$	$min(F_{c,Rd,y},F_{c,fc,R}$	ld,y)		
$F_{C,Rd,y} =$	2897,85	[kN]	Résistance de la semelle dans la zone comprimé	ée [6.2.8.3]
$F_{C,Rd,z} =$	$min(F_{c,Rd,z},F_{c,fc,R}$	ld,z)		
$F_{C,Rd,z} =$	4002,12	[kN]	Résistance de la semelle dans la zone comprimé	ée [6.2.8.3]
ZONE	<u>TENDUE</u>			
RUPTU	RE DU BOULON	N D'ANCRA	GE	
$A_b =$	5,61	[cm ²]	Aire de section efficace du boulon	[Tableau 3.4]
f _{ub} =	400,00	[MPa]	Résistance du matériau du boulon à la traction	[Tableau 3.4]
Beta =	0,85		Coefficient de réduction de la résistance du boulor	[3.6.1.(3)]

$F_{t,Rd,s1} = k$	peta*0.9*f _{ub} *A	4 _b /γ _{M2}		
$F_{t,Rd,s1} =$	137,33	[kN	N] Résistance du boulon à la rupture	[Tableau 3.4]
γ _{Ms} =	1,20		Coefficient de sécurité partiel	CEB [3.2.3.2]
f _{yb} =	240,00	[MPa]	Limite de plasticité du matériau du boulon	CEB [9.2.2]
$F_{t,Rd,s2} = f_{t}$	_{yb} *A _b /γ _{Ms}			
$F_{t,Rd,s2} =$	112,20	[kN	Résistance du boulon à la rupture	CEB [9.2.2]
$F_{t,Rd,s} = m$	nin(F _{t,Rd,s1} ,F _{t,F}	_{Rd,s2})		
$F_{t,Rd,s} =$	112,20	[kN] Résistance du boulon à la rupture	
ARRACH	IEMENT DU	BOULO	N D'ANCRAGE DU BETON	
f _{ck}	25,0	[MPa	Résistance caractéristique du béton à la	EN 1992-
=	0]	compression	1:[3.1.2]
$f_{ctd} = 0.7^{*}$	0.3*f _{ck} ²/3/γ _C			
f _{ctd}	1,2 [M	IP F	Résistance de calcul à la traction	EN 1992-
=	0 a] '		1:[8.4.2.(2)]
η_1	1,0	(Coef. dépendant des conditions du bétonnage et de	EN 1992-
=	0		adhérence	1:[8.4.2.(2)]

f _{ctd} =	1,2 0	[MP a]	Résista	nce de calcul à la traction	EN 1992- 1:[8.4.2.(2)]
η ₂ =	1,0 0		Coef. de	épendant du diamètre du boulon d'ancrage	EN 1992- 1:[8.4.2.(2)]
$f_{bd} = 2.23$	5*n₁*n₂*f _{etd}				
f _{bd} =	2,69	[MPa]	Adh	érence de calcul admissible	EN 1992-1:[8.4.2.(2)]
h., –	500	[mm]	Long	nueur efficace du boulon d'ancrage	EN 1992-1.[8 4 2 (2)]
	-*d*b .*f	[]	Long	Jucur emease au boulon à anolage	
$F_{t,Rd,p} = f_{t,Rd,p}$	παn _{ef} ibd 126,9	91 [(N]	Résistance de calc. pour le soulèvement	EN 1992-1:[8.4.2.(2)]
ARRAC	HEMENT 1	DU CONI	E DE BEI	ON	
h _{ef} =	437	[mm]	Longu	eur efficace du boulon d'ancrage	CEB [9.2.4]
$N_{Rk,c}^{0} = $	7.5[N ^{0.5} /mn	n ^{0.5}]*f _{ck} *h _e	1.5 f		
$N_{Rk,c}^0 =$	342	2,18	[kN]	Résistance caractéristique du boulon d'ancrage	e CEB [9.2.4]
Scr N =		1310	[mm]	Largeur critique du cône de béton	CEB [9.2.4]
		655	[mm]	Distance critique du bord de la fondation	CEB [9 2 4]
$\Delta_{\rm LNO} =$	26740	0 00	[cm ²]	Aire de surface maximale du cône	CEB [0.2.1]
Λ	2240	0,00	[cm ²]	Aire de surface réalle du cône	
$A_{c,N} =$	22400	0,00	[CIII-]	Alle de sullace leelle du colle	UED [9.2.4]
$\Psi_{A,N} = A$	c,N/Ac,N0		~ /		
ΨΑ,Ν	0,8		Coef.	dépendant de l'entraxe et de la pince des boulons	CEB
=	4		d'anc	rage	[9.2.4]
C =	500	[mm]	Pince	minimale boulon d'ancrage-extrémité	CEB [9.2.4]
$\psi_{s,N} = 0.$	7 + 0.3*c/c	_{cr.N} ≤ 1.0			
Ψs.N	0,9	Cast	معاممه	t du ninge heulen dienerene outrémité de le fondati	CEB
=	3	Coel. d	lependan	t du pince bouion d'ancrage-extremite de la fondation	on [9.2.4]
Ψec,N =	1,0 0	Coef. d d'ancra	lépendan Ide	t de la répartition des efforts de traction dans les bo	oulons CEB [9.2.4]
$W_{\rm res} = 0$	5 + h.(mm	n1/200 < 1	0		L- 1
	1 00	1,200 - 1	Coef dá	épendant de la densité du ferraillage dans la fondati	CEB [9.2.4]
Ψre,N —	1 00		Coof de	spendant de la densite du ferrainage dans la fondati	
$\psi_{ucr,N} =$	1,00			ependant du degre de institation du beton	CED [9.2.4]
γ _{Mc} =	2,16		Coefficie	ent de securite partiel	CEB [3.2.3.1]
$F_{t,Rd,c} = I$	$N_{Rk,c}^{0*}\Psi_{A,N}^{*}$	Ψs,N [*] Ψec,N	[*] Ψre,Ν [*] Ψu	cr,N∕γMc	
F. D.	123	[k	Résista	nce de calcul du boulon d'ancrage à l'arrachement	EN 1992-
c =	,28	Ņ	du cône	de béton	1:[8.4.2.(2)]
0	, -]			[(-/]
FENDA	GE DU BET	ΓΟΝ			
h _{ef} =	500	[mm]	Longu	eur efficace du boulon d'ancrage	CEB [9.2.5]
$N_{Rk,c}^{0} = $	7.5[N ^{0.5} /mn	n ^{0.5}]*f _{ck} *h _€	1.5 f		
$N_{Rk,c}^{0} =$	41	9,26	[kN]	Résistance de calc. pour le soulèvement	CEB [9.2.5]
$S_{crN} =$		1000	[mm]	Largeur critique du cône de béton	CEB [9.2.5]
$C_{cr,N} =$		500	[mm]	Distance critique du bord de la fondation	CEB [9.2.5]
$A_{c,NO} =$	1744(0.00	[cm ²]	Aire de surface maximale du cône	CEB [9 2 5]
$\Delta_{\rm c,NO} =$	1744	0 00	[cm ²]	Aire de surface réelle du cône	CEB [0.2.0]
$\Lambda_{C,N} = \Lambda$		0,00	[om]		000 [0.2.0]
$\psi_{A,N} = A$	c,N/Ac,N0		0(alémentation de lla vénera et de la reira en des la velava	
ΨΑ,Ν =	1,0		d'anc	rage	[9.2.5]
c =	500	[mm]	Pince	minimale boulon d'ancrage-extrémité	CEB [9.2.5]
$\Psi_{\rm SN} = 0.$	7 + 0.3*c/c	- cr N ≤ 1.0			
Ψs,N	1,0	Coef. d	lépendan	t du pince boulon d'ancrage-extrémité de la fondation	on CEB
=	0	0			[9.2.5]
Ψec,N	1,0	Coef. d	lependan	t de la repartition des efforts de traction dans les bo	oulons CEB
=	0	aancra	ige		[9.2.5]
$\psi_{re,N} = 0$.5 + h _{ef} [mm	ı]/200 ≤ 1	.0		
ψ _{re,N} =	1,00		Coef.	dépendant de la densité du ferraillage dans la fonda	ation CEB [9.2.5]
$\psi_{ucr,N} =$	1,00		Coef.	dépendant du degré de fissuration du béton	CEB [9.2.5]
$\psi_{h,N} = (h$	/(2*h _{ef})) ^{2/3} :	≤ 1.2		-	
Wh N =	0,71		Coef. d	épendant de la hauteur de la fondation	CEB [9.2.5]
T 11,01 -	-, -				[0. . .0]

$\psi_{h,N} =$	0,71	Coef. dé	pendant de la hauteur de la fondation	CEB [9.2.5]	
γ _{M,sp} =	= 2,16 Coefficient de sécurité partiel				
$F_{t,Rd,sp} = N_F$	Rk,c ^{0*} ΨA,N [*] Ψs,N [*]	ψ ec,N $^*\psi$ re,N $^*\psi$ u	cr,N [*] Ψh,N∕γM,sp		
F _{t,Rd,sp}	138,0	[kN Ré	sistance de calcul du boulon d'ancrage au fendage du	CEB	
=	8] be	ton	[9.2.5]	
RESISTAN	ICE DU BOUL	ON D'ANCR	AGE A LA TRACTION		
$F_{t,Rd} = min($	$F_{t,Rd,s}$, $F_{t,Rd,p}$,	$F_{t,Rd,c}$, $F_{t,Rd,s}$	(q.		
F _{t,Rd} =	112,20	[kN] R	ésistance du boulon d'ancrage à traction		
FLEXION	DE LA PLAQ	UE DE BASE			
Moment flé	chissant M _{j,Ed,}	y			
$I_{eff,1} =$	211	[mm]	Longueur efficace pour un boulon pour le mode 1	[6.2.6.5]	
$I_{eff,2} =$	211	[mm]	Longueur efficace pour un boulon pour le mode 2	[6.2.6.5]	
m =	39	[mm]	Pince boulon-bord de renforcement	[6.2.6.5]	
$M_{pl,1,Rd} =$	11,16	[kN*m]	Résistance plastique de la dalle pour le mode 1	[6.2.4]	
$M_{pl,2,Rd} =$	11,16	[kN*m]	Résistance plastique de la dalle pour le mode 2	[6.2.4]	
F _{T,1,Rd} =	1153 , 52	[kN]	Résistance de la dalle pour le mode 1	[6.2.4]	
$F_{T,2,Rd} =$	381,00	[kN]	Résistance de la dalle pour le mode 2	[6.2.4]	
F _{T,3,Rd} =	224,40	[kN]	Résistance de la dalle pour le mode 3	[6.2.4]	
$F_{t,pl,Rd,y} = m$	nin(F _{T,1,Rd} , F _{T,2}	2,Rd , F _{T,3,Rd})			
$F_{t,pl,Rd,y} =$	224,40	[kN]	Résistance de la dalle pour le mode à la traction	[6.2.4]	
Moment flé	chissant M _{j,Ed,}	z			
I _{eff,1} =	211	[mm]	Longueur efficace pour un boulon pour le mode 1	[6.2.6.5]	
$I_{eff,2} =$	211	[mm]	Longueur efficace pour un boulon pour le mode 2	[6.2.6.5]	
m =	39	[mm]	Pince boulon-bord de renforcement	[6.2.6.5]	
$M_{pl,1,Rd} =$	11,16	[kN*m]	Résistance plastique de la dalle pour le mode 1	[6.2.4]	
$M_{pl,2,Rd} =$	11,16	[kN*m]	Résistance plastique de la dalle pour le mode 2	[6.2.4]	
F _{T,1,Rd} =	1153 , 52	[kN]	Résistance de la dalle pour le mode 1	[6.2.4]	
F _{T,2,Rd} =	381,00	[kN]	Résistance de la dalle pour le mode 2	[6.2.4]	
F _{T,3,Rd} =	224,40	[kN]	Résistance de la dalle pour le mode 3	[6.2.4]	
$F_{t,pl,Rd,z} = m$	nin(F _{T,1,Rd} , F _{T,2}	2,Rd , F _{T,3,Rd})			
$F_{t,pl,Rd,z} =$	224,40	[kN]	Résistance de la dalle pour le mode à la traction	[6.2.4]	
RESISTAN	ICES DE SEM	ELLE DANS	LA ZONE TENDUE		
$F_{T,Rd,y} = F_{t,g}$	ol,Rd,y				
F _{T,Rd,y} =	224,40	[kN]	Résistance de la semelle dans la zone tendue	[6.2.8.3]	
$F_{T,Rd,z} = F_{t,p}$	ol,Rd,z	-		· · ·	
$F_{T,Rd,z} =$	224,40	[kN]	Résistance de la semelle dans la zone tendue	[6.2.8.3]	

CONTROLE DE LA RESISTANCE DE L'ASSEMBLAGE

N _{j,Ed} / N _{j,Rd} ≤ 1,0 (6.24)			0,01 < 1,00	vérifié	(0,01)
e _y =	1254	[mm]	Excentricité de l'effort axial		[6.2.8.3]
$Z_{C,y} =$	293	[mm]	Bras de levier F _{C,Rd,y}		[6.2.8.1.(2)]
$z_{t,y} =$	300	[mm]	Bras de levier F _{T,Rd,y}		[6.2.8.1.(3)]
$M_{j,Rd,y} =$	173 , 57	[kN*m]	Résistance de l'assemblage à	à la flexion	[6.2.8.3]
M _{j,Ed,y}	/ $M_{j,Rd,y} \leq 1,0$	(6.23)	0,91 < 1,00	vérifié	(0,91)
e _z =	21	[mm]	Excentricité de l'effort axial		[6.2.8.3]
$Z_{c,z} =$	107	[mm]	Bras de levier F _{C,Rd,z}		[6.2.8.1.(2)]
$z_{t,z} =$	45	[mm]	Bras de levier F _{T,Rd,z}		[6.2.8.1.(3)]
$M_{j,Rd,z} =$	141,02	[kN*m]	Résistance de l'assemblage à	à la flexion	[6.2.8.3]
$M_{j,Ed,z} / M_{j,Rd,z} \le 1,0$ (6.23)			0,02 < 1,00	vérifié	(0,02)
M _{j,Ed,y} / M _{j,R}	_{d,y} + M _{i,Ed,z} / N	l _{j,Rd,z} ≤ 1,0	0,93 < 1,00	vérifié	(0,93)

CISAILLEMENT

PRESSION DU BOULON D'ANCRAGE SUR LA PLAQUE D'ASSISE

Cisaillement par l'effort $V_{j,Ed,y}$

α _{d,y}	0,6	Coef. d'emplacement des boulons en direction du cisaillement	[Tableau
=	9		3.4]

Cisaillem	ent par l'ef	fort V _{j,Ed,y}		
α _{d,y} =	0,6 9	Coef. d'empla	acement des boulons en direction du cisaillement	[Tableau 3.4]
α _{b,y} =	0,6 9	Coef. pour les	s calculs de la résistance F _{1,vb,Rd}	[Tableau 3.4]
k _{1,y} =	2,5 0	Coef. d'empla cisaillement	acement des boulons perpendiculairement à la direction du	[Tableau 3.4]
F _{1,vb,Rd,y} = F _{1,vb,Rd,y} =	= k _{1,y} *α _{b,y} *f _u 451,	_{ip} *d*t _p / γ _{M2} δ [k ອ N]	Résistance du boulon d'ancrage à la pression sur la plaque d'assise	[6.2.2.(7)]
Cisaillem	ent par l'ef	fort V _{j,Ed,} z		
α _{d,z} =	6,0 0	Coef. d'empla	acement des boulons en direction du cisaillement	[Tableau 3.4]
α _{b,z}	1,0 0	Coef. pour les	s calculs de la résistance F _{1,vb,Rd}	[Tableau 3.4]
k _{1,z} =	2,2 4	Coef. d'empla cisaillement	acement des boulons perpendiculairement à la direction du	[Tableau 3.4]
F _{1,vb,Rd,z} = F _{1,vb,Rd,z} =	= k _{1,z} *α _{b,z} *f _u 588,	_{πp} *d*t _p / γ _{M2} Ο [k L N]	Résistance du boulon d'ancrage à la pression sur la plaque d'assise	[6.2.2.(7)]
CISAILL	EMENT D	U BOULON D	D'ANCRAGE	
$\alpha_{b} =$	0,37		Coef. pour les calculs de la résistance F _{2,vb,Rd}	[6.2.2.(7)]
$A_{vb} =$	7,07	[cm ²]	Aire de la section du boulon	[6.2.2.(7)]
t _{ub} =	400,00	[MPa]	Résistance du matériau du boulon à la traction	[6.2.2.(7)]
γ _{M2} =	1,25		Coefficient de securite partiel	[6.2.2.(7)]
$F_{2,vb,Rd} =$	$\alpha_{b}^{t_{ub}}A_{vb}/\gamma$	/M2	Désistance du baulas en siscillare est sons base de la visa	[C O O (7)]
$F_{2,vb,Rd} =$	83,2	4 [KIN]	Resistance du bouion au cisalliement - sans bras de levier	[6.2.2.(7)]
α _M =	2,0		Coef. dépendant de l'ancrage du boulon dans la fondation	CEB [9.3.2.2]
M _{Rk,s} =	0,3 5	[kN*m]	Résistance caractéristique de l'ancrage à la flexion	[9.3.2.2]
I _{sm} =	60	[mm]	Longueur du bras de levier	[9.3.2.2]
γ _{Ms} =	1,2		Coefficient de sécurité partiel	[3.2.3.2]
$F_{v,Rd,sm} =$	α _M *M _{Rk,s} /(I	_{sm} *γ _{Ms})		
F _{v,Rd,sm} =	9 , 7 9	[kN]	Résistance du boulon au cisaillement - avec bras de levier	CEB [9.3.1]
RUPTUR	RE DU BET	ON PAR EFF	ET DE LEVIER	
N _{Rk,c} =	266,29) [kN]	Résistance de calc. pour le soulèvement	CEB [9.2.4]
k ₃ =	2,00)	Coef. dépendant de la longueur de l'ancrage	CEB [9.3.3]
үмс =	2,16	5	Coefficient de sécurité partiel	CEB [3.2.3.1]
$F_{v,Rd,cp} =$	k ₃ *N _{Rk,c} /γ _{Mc}			
$F_{v,Rd,cp} =$	246,	57 [kN]	Résistance du béton à l'effet de levier	CEB [9.3.1]
ECRASE	MENT DU	BORD DU BI	ETON	
Cisaillem	ent par l'efi	fort V _{j,Ed,y}		
V _{Rk,c,y} ⁰ =	1659 ,73	IK N Ro 1	ésistance caractéristique du boulon d'ancrage	CEB [9.3.4.(a)]
ΨΑ,V,y =	0,31	, C(d'a	oef. dépendant de l'entraxe et de la pince des boulons ancrage	CEB [9.3.4]
Ψh,V,y =	1,18	C	oef. dépendant de l'épaisseur de la fondation	CEB [9.3.4.(c)]
Ψs,v,y =	0,85	C	oef. d'influence des bords parallèles à l'effort de cisaillement	CEB [9.3.4.(d)]
Ψec,V,y =	1,00	Co	oef. d'irrégularité de la répartition de l'effort tranchant sur le oulon d'ancrage	CEB [9.3.4.(e)]
Ψα,∨,y =	1,00	C	oef. dépendant de l'angle d'action de l'effort tranchant	CEB [9.3.4.(f)]

V _{Rk,c,y} ⁰ =	1659 ,73	[k N 1	Résistan	ce caractéristic	ue du boulon d'and	crage	CEB [9.3.4.(a)]
Ψucr,∨, y =	1,00	1	Coef. dé fondatior	pendant du mo ì	de de ferraillage du	ı bord de la	CEB [9.3.4.(g)]
γ _{мс} =	2,16		Coefficie	nt de sécurité p	partiel		CEB [3.2.3.1]
F _{v,Rd,c,y} F _{v,Rd,c,y}	$= V_{Rk,c,y}^{0*} \psi_{A,V,y}$ = 240,00	ν [*] Ψh,V,y [*] Ψs, ^v Ο [ki	∨,y [*] Ψec,∨,y N] Ι	*ψ _{α,∨,y} *ψ _{ucr,∨,y} /γ _Ν Résistance du l	^{и₀} béton pour l'écrase	ment du bord	CEB [9.3.1]
Cisaille	ement par l'effoi	rt V _{j,Ed,z}					
V _{Rk,c,z} ⁰ =	1106 ,96	[K N]	Résistan	ce caractéristiq	ue du boulon d'and	crage	CEB [9.3.4.(a)]
ΨA,V,z =	0,70		Coef. dé d'ancrag	pendant de l'en e	traxe et de la pince	e des boulons	CEB [9.3.4]
Ψh,V,z =	1,08		Coef. dé	pendant de l'ép	aisseur de la fonda	ation	CEB [9.3.4.(c)]
Ψs,v,z =	0,96		Coef. d'ir	nfluence des bo	ords parallèles à l'e	ffort de cisaillement	CEB [9.3.4.(d)]
ψ _{ec,V,z}	1,00		Coef. d'ir boulon d	régularité de la 'ancrage	répartition de l'effo	ort tranchant sur le	CEB [9.3.4.(e)]
Ψα,∨,z =	1,00		Coef. dé	pendant de l'an	gle d'action de l'eff	ort tranchant	CEB [9.3.4.(f)]
ψucr,∨, z =	1,00		Coef. dé fondatior	pendant du mo 1	de de ferraillage du	ı bord de la	CEB [9.3.4.(g)]
үмс =	2,16		Coefficie	nt de sécurité p	partiel		CEB [3.2.3.1]
F _{v,Rd,c,z} F _{v,Rd,c,z}	= $V_{Rk,c,z}^{0*} \psi_{A,V,z}$ = 371,04	z [*] Ψh,V,z [*] Ψs,V 4 [k]	∨,z [*] Ψec,∨,z N]	*ψ _{α,∨,z} *ψ _{ucr,∨,z} /γ _N Résistance du l	^{nc} béton pour l'écrase	ment du bord	CEB [9.3.1]
GLISS	EMENT DE LA	SEMELI	E				
$C_{f,d} = N_{c,Ed} =$	0,30 126,24	[kN]	Co Ef	oef. de frotteme fort de compres	ent entre la plaque ssion	d'assise et le béton	[6.2.2.(6)] [6.2.2.(6)]
$F_{f,Rd} =$ $F_{f,Rd} =$	C _{f,d} *N _{c,Ed} 37,87	[kN]	Résist	ance au glisser	ment		[6.2.2.(6)]
CONT	ACT DE LA CA	ALE D'AR	RET AV	EC BETON			[0(0)]
F _{v,Rd,wg}	$_{y} = 1.4^{*}I_{w}^{*}b_{wy}^{*}f_{w}$	ск/үс					
F _{v,Rd,wg}	y = 233,3	33 [I	kN]	Résistance a	u contact de la cale	e d'arrêt avec béton	
F _{v,Rd,wg} F _{v,Rd,wg}	$z = 1.4^{N} w^{D} w z^{T} $ z = 128, 3	ck/γc 33 [kN]	Résistance a	u contact de la cale	e d'arrêt avec béton	
CONT	ROLE DU CISA	AILLEME –	NT	`			
V _{j,Rd,y} = V =	: n_b*min(F_{1,vb,Rd} j,Rd,y 31	I,y, F _{2,vb,Rd} , 0, 3 7	F _{v,Rd,sm} , [kN]	F _{v,Rd,cp} , F _{v,Rd,c,y}) Résistance de cisaillement	+ F _{v,Rd,wg,y} + F _{f,Rd} I'assemblage au		CEB [9.3.1]
V	$i_{j,Ed,y} / V_{j,Rd,y} \le 1$,0			0,03 < 1,00	vérifié	(0,03)
V _{j,Rd,z} = V	= n_b*min(F 1,vb,Rd j,Rd,z 20	I,z, F _{2,vb,Rd} , 5,3 7	F _{v,Rd,sm} , [kN]	F _{v,Rd,cp} , F _{v,Rd,c,z}) Résistance de cisaillement	+ F _{v,Rd,wg,z} + F _{f,Rd} l'assemblage au		CEB [9.3.1]
V	$i_{j,Ed,z} / V_{j,Rd,z} \le 1$,0	1		0,36 < 1,00	vérifié	(0,36
V	j, _{Ed,y} / V _{j,Rd,y} + V	/ _{j,Ed,z} / V _{j,Ro}	_{i,z} ≤ 1,0	0,39 <	1,00	vérifié	(0,39)

CONTROLE DES RAIDISSEURS

M ₁ =	9,59	[kN* m]	Moment fléchissant du raidisseur
Q ₁ =	85,27	[kN]	Effort tranchant du raidisseur

Plaqu	e trapézoïdale p	oarallèle à l	'âme du poteau							
M₁ =	9,59	[kN* m]	Moment fléchis	Noment fléchissant du raidisseur						
Zs =	197	[mm]	Position de l'axe plaque)	e neutre (à partir de la b	oase de la					
l _s =	27676, 72	[cm⁴]	Moment d'inerti	e du raidisseur						
σ _d =	5,80	[MP a]	Contrainte norm la dalle	Contrainte normale au contact du raidisseur et de a dalle						
σ _g =	9,80	[MP a]	Contrainte norm	Contrainte normale dans les fibres supérieures						
τ =	9,47	[MP a]	Contrainte teng	Contrainte tengentielle dans le raidisseur						
σ _z =	17,40	[MP a]	Contrainte équinde la dalle	Contrainte équivalente au contact du raidisseur et de la dalle						
m	ax (σ _g , τ / (0.58), σ _z) / (f _{yp}	/γ _{M0}) ≤ 1.0 (6.1)	0,07 < 1,00	vérifié	(0,07)				
Raidis	sseur perpendic	ulaire à l'â	me (au milieu de l'á	ìme du poteau)						
M ₁ =	1,47	[kN* m]	Moment fléchise	sant du raidisseur						
Q1 =	39,09	[kN]	Effort tranchant	du raidisseur						
Zs =	135	[mm]	Position de l'axe plaque)	e neutre (à partir de la t	oase de la					
	41175.	[cm ⁴								

۱ _s	41175,]	Moment d'inerti	e du raidisseur		
σ =	d 0,37	[MP a]	Contrainte norn Ia dalle	nale au contact du raidi	sseur et de	EN 1993-1- 1:[6.2.1.(5)]
σ =	g 1,23	[MP a]	Contrainte norm	nale dans les fibres sup	périeures	EN 1993-1- 1:[6.2.1.(5)]
τ	= 4,34	[MP a]	Contrainte teng	entielle dans le raidisse	eur	EN 1993-1- 1:[6.2.1.(5)]
σ =	z 7,53	[MP a]	Contrainte équi de la dalle	valente au contact du r	aidisseur et	EN 1993-1- 1:[6.2.1.(5)]
	max (σ _g , τ / (0.58	8), σ _z)/(f _y	_{/p} /γ _{M0}) ≤ 1.0 (6.1)	0,03 < 1,00	vérifié	(0,03)

SOUDURES ENTRE LE POTEAU ET LA PLAQUE D'ASSISE

σ⊥ =	10,44	[MPa]	Contrainte r	normale dans la soudure	[4.5.3.(7)]	
$\tau_{\perp} =$	10,44	[MPa]	Contrainte t	engentielle perpendiculaire	[4.5.3.(7)]	
$\tau_{yII} =$	0,65	[MPa]	Contrainte t	engentielle parallèle à V _{j,Ed,y}	[4.5.3.(7)]	
$\tau_{zII} =$	1,65	[MPa]	Contrainte t	engentielle parallèle à V _{j,Ed,z}	[4.5.3.(7)]	
βw =	0,85		Coefficient	dépendant de la résistance		[4.5.3.(7)]
σ⊥ / (0.9*	[∗] f _u /γ _{M2})) ≤ 1.	0 (4.1)		0,04 < 1,00	vérifié	(0,04)
$\sqrt{(\sigma_{\perp}^2 + 3.0 (\tau_{yll}^2 + \tau_{\perp}^2))} / (f_u/(\beta_W^* \gamma_{M2}))) \le 1.0 (4.1)$ 0,06 < 1,00 vérifié						
√(σ⊥² + 3	$3.0 (\tau_{zll}^2 + \tau_{\perp})$	²)) / (f _u /(β _W *γ _N	₂))) ≤ 1.0 (4.1)	0,05 < 1,00	vérifié	(0,05)

SOUDURES VERTICALES DES RAIDISSEURS

Plaq	ue trapézoïo	dale parall	èle à l'âme du j	poteau			
	σ⊥ =	0,00	[MPa]	Contrainte nor	male dans la soudure		[4.5.3.(7)]
	τ_{\perp} =	0,00	[MPa]	Contrainte ten	gentielle perpendiculaire		[4.5.3.(7)]
	$\tau_{II} =$	18,95	[MPa]	Contrainte ten	gentielle parallèle		[4.5.3.(7)]
	σ _z =	0,00	[MPa]	Contrainte tota	le équivalente		[4.5.3.(7)]
	βw =	0,85		Coefficient dép	pendant de la résistance		[4.5.3.(7)]
	max (σ⊥, τ	c _{II} * √3, σ _z)	/ (f _u /(β _W *γ _{M2}))	≤ 1.0 (4.1)	0,10 < 1,00	vérifié	(0,10)
Raid	isseur perp	endiculaire	e à l'âme (au m	ilieu de l'âme d	u poteau)		
	σ_{\perp} =	1,54	[MPa]	Contrainte no	ormale dans la soudure		[4.5.3.(7)]
	τ_{\perp} =	1,54	[MPa]	Contrainte te	ngentielle perpendiculaire		[4.5.3.(7)]
	$\tau_{II} =$	4,34	[MPa]	Contrainte te	ngentielle parallèle		[4.5.3.(7)]

σ⊥ =	1,54	[MPa]	Contrainte	Contrainte normale dans la soudure		
σ _z =	8,13	[MPa]	Contrainte	totale équivalente		[4.5.3.(7)]
βw =	0,85		Coefficient	dépendant de la résistance		[4.5.3.(7)]
max (σ⊥	, τ _{II} * √3, σ _z)	/ (f _u /(β _W *γ _{M2}))	≤ 1.0 (4.1)	0,02 < 1,00	vérifié	(0,02)

SOUDURES HORIZONTALES DES RAIDISSEURS

Plaqu	ie trapézoi	idale parallè	èle à l'âme du	poteau					
	σ⊥ =	13,40	[MPa]	Contrainte no		[4.5.3.(7)]			
	τ_{\perp} =	13,40	[MPa]	Contrainte ter	ngentielle perpendiculaire	9	[4.5.3.(7)]		
	$\tau_{II} =$	8,65	[MPa]	Contrainte ter	ontrainte tengentielle parallèle				
	σ _z =	30,70	[MPa]	Contrainte tot	ontrainte totale équivalente				
	βw =	0,85		Coefficient dé	pendant de la résistance	;	[4.5.3.(7)]		
	max (σ⊥,	τ _{II} * √3, σ _z)	/ (f _u /(β _W *γ _{M2}))	≤ 1.0 (4.1)	0,09 < 1,00	vérifié	(0,09)		
Ra	idisseur pe	rpendiculai	re à l'âme (au	milieu de l'âm	e du poteau)				
	σ⊥ =	18,43	[MPa]	Contrainte no	rmale dans la soudure		[4.5.3.(7)]		
	τ_{\perp} =	18,43	[MPa]	Contrainte ter	ngentielle perpendiculaire	9	[4.5.3.(7)]		
	τ _{II} =	6,78	[MPa]	Contrainte ter	ngentielle parallèle		[4.5.3.(7)]		
	σ _z =	38,68	[MPa]	Contrainte tot	ale équivalente		[4.5.3.(7)]		
	$\beta_W =$	0,85		Coefficient dé)	[4.5.3.(7)]			
	max (σ_{\perp} ,	τ _{II} * √3, σ _z)	/ (f _u /(β _W *γ _{M2}))	≤ 1.0 (4.1)	0,11 < 1,00	vérifié	(0,11)		

<u>RIGIDITE DE L'ASSEMBLAGE</u>

Moment	t fléchissa	nt M _{j,Ed,y}			
b _{eff} =	125	[mm]	Largeur	efficace de la semelle de tronçon T	[6.2.5.(3)]
$I_{eff} =$	301	[mm]	Longueu	Ir efficace de la semelle de tronçon en T	[6.2.5.(3)]
$k_{13,y} = E$	c*√(b _{eff} *l _{ef}	_f)/(1.275*E)			
k _{13,y} =	23	[mm]	Coef. de	rigidité du béton comprimé	[Tableau 6.11]
$I_{eff} =$	211	[mm]	Longueu	r efficace pour un boulon pour le mode 2	[6.2.6.5]
m =	39	[mm]	Pince bo	ulon-bord de renforcement	[6.2.6.5]
$k_{15,y} = 0$.425*l _{eff} *t _r	³ /(m ³)			
k _{15,y} =	42	[mm]	Coef. de	rigidité de la plaque d'assise en traction	[Tableau 6.11]
$L_b =$	325	[mm]	Longueur	efficace du boulon d'ancrage	[Tableau 6.11]
$k_{16,y} = 1$.6*A _b /L _b				
k _{16,y} =	3	[mm]	Coef. de	rigidité du boulon d'ancrage en traction	[Tableau 6.11]
$\lambda_{0,y} =$		0,35		Elancement du poteau	[5.2.2.5.(2)]
S _{j,ini,y} =	90	697 , 18	[kN*m]	Rigidité en rotation initiale	[Tableau 6.12]
S _{j,rig,y} =	3543	300,45	[kN*m]	Rigidité de l'assemblage rigide	[5.2.2.5]
S _{j,ini,y} < S	S _{j,rig,y} SEN	/II-RIGIDE			[5.2.2.5.(2)]
Moment	fléchissa	nt M _{j,Ed,z}			
$k_{13,z} = E$	c*√(A _{c,z})/(1.275*E)			
k _{13,z} =	41	[mm]	Coef. de	rigidité du béton comprimé	[Tableau 6.11]
l _{eff} =	211	[mm]	Longueu	r efficace pour un boulon pour le mode 2	[6.2.6.5]
m =	39	[mm]	Pince bo	ulon-bord de renforcement	[6.2.6.5]
$k_{15,z} = 0$.425*l _{eff} *t _p	³ /(m³)			
k _{15,z} =	42	[mm]	Coef. de	rigidité de la plaque d'assise en traction	[Tableau 6.11]
$L_b =$	325	[mm]	Longueur	efficace du boulon d'ancrage	[Tableau 6.11]
$k_{16,z} = 1$.6*A _b /L _b				
k _{16,z} =	3	[mm]	Coef. de	rigidité du boulon d'ancrage en traction	[Tableau 6.11]
$\lambda_{0,z} =$		1,55		Elancement du poteau	[5.2.2.5.(2)]
$S_{j,ini,z} =$	197	747,96	[kN*m]	Rigidité en rotation initiale	[6.3.1.(4)]
$S_{j,rig,z} =$	17	596,53	[kN*m]	Rigidité de l'assemblage rigide	[5.2.2.5]
$S_{j,\text{ini},z} \geq S$	S _{j,rig,z} RIG	IDE			[5.2.2.5.(2)]

COMPOSANT LE PLUS FAIBLE:

BOULON D'ANCRAGE A LA RUPTURE

Assemblage satisf	faisant vis à vis de la Norme	Ratio	0,93

VIII.5.Conclusion :

Cette partie d'étude a consisté à assembler les differents éléments qui ont été dimensionnés dans le precdent chapitre.

Chapitre IX Etude

des fondations

IX.1 Introduction

Un ouvrage quelle que soit sa forme et sa destination, prend toujours appui sur un sol d'assise. Les éléments qui jouent le rôle d'interface entre l'ouvrage et le sol s'appelle fondations. Le dimensionnement de la fondation est conditionné par le site d'implantation.

IX.2hoix du type de fondation

Le choix du type de fondation se fait suivant trois paramètres :

-La nature et le poids de la superstructure.

-La qualité et la quantité des charges appliquées sur la construction.

-La qualité du sol de fondation.

-La contrainte admissible de notre sol $\sigma = 2$ bar.

-La profondeur d'ancrage : D = 2,00 m.

IX.3alcul des fondations

IX.3.1harges à considérer :

Les sollicitations les plus défavorables sont données dans le tableau ci-dessous:

	ELU(KN	[)	ELS(KN)			
V N		М	V	Ν	М	
73.27	324.57	158.29	50.43	225.02	109.66	

Tableau IX.1.Sollicitations les plus défavorables

IX.3.2.Pré-dimensionnement

Semelle carré : S=A×B / σ 'sol = 2bar = 20t/m²

$$A \times B \ge \frac{N_1}{\sigma'_{sol}} = \frac{225.02}{200} = 1.12 \text{ m}^2$$

A × B ≥ 1.12 m²
On prend A= 3 et B=1.5m

FigureIX.1 .Sollicitations de fondation

IX.4.Calcul de hauteur de la semelle sol

$$(\mathbf{h}_{c} - \mathbf{d}') \ge \max\left(\frac{\mathbf{B}-\mathbf{b}}{4}, \frac{\mathbf{A}-\mathbf{a}}{4}\right)$$

2020-2021

 $(h_c - d^{'}) \hspace{0.1in} \geq \hspace{0.1in} \left(\frac{1.5 - 0.38}{4}, \frac{3 - 0.9}{4} \right)$

 $(h_c - d') \ge max(0,28;0,53)(m)$

 $(h_c - d') \ge 0.53 \text{ m}$

On prend d' = 5 cm \Rightarrow h_c= 60 cm , d' : enrobage d'acier

IX.5.Vérification de la stabilité

Stabilité $\Rightarrow A \ge 6e_1$; tel que e_1 : excentricité

$$e_1 = \frac{M_1}{N_1} = \frac{109.66}{225.02} = 0.48m$$

 $6e_1 = 6 \times 0.48 = 2.88 \text{ m}$

 $A > 6e_1$ condition de stabilité est vérifié

IX.6.Vérification de la contrainte

$$A \ge \frac{N_1}{\sigma'_{sol} \times B} \left(1 + 3\frac{e_1}{B} \right) = \frac{225.02}{200 \times 1.5} \left(1 + 3\frac{0.48}{1.5} \right) = 1.47 \text{m Donc}:$$

A > 1.47m (vérifiée)

$$\sigma_{max} = \frac{4N}{3B(A-2e)} = \frac{4 \times 324.57}{3 \times 1.5(3-2 \times 0.48)} = 141.42 \text{KN}/\text{m}^2 < \sigma_{sol} = 200 \text{KN}/\text{m}^2$$

IX.7.Ferraillage

 $N^* = \sigma_{max} \times S = 141.42 \times 4.5 = 636.39 \text{ KN}$ $A_x = \frac{N^*(B-b)}{8(h_c - d')f_{su}}$ $A_y = \frac{N^*(A-a)}{8(h_c - d')f_{su}}$ $A_x = \frac{636.39(1.5 - 0.38)}{8(0.55)348} \times 10 = 4.65 \text{ cm}^2$ $A_y = \frac{636.39(3 - 0.9)}{8(0.55)348} \times 10 = 8.72 \text{ cm}^2$

IX.8.Condition de non fragilité

Pour qu'une section en béton armé soumise à la traction ou la flexion soit considérée comme non fragile, la relation suivante doit être vérifiée :

$$\begin{split} A_s &\geq 0.23 \frac{b \times d \times f_{tj}}{f_e} \qquad (\text{Article A. 4.2.1 - BAEL91}) \\ A_s &= 0.23 \frac{(55 \times 150 \times 2.1}{400} = 11,38 \text{ cm2} \quad \text{donc il faut prendre la section minimum du} \quad \text{BAEL soit} \\ 12\text{HA12} &= 13.57. \text{ cm}^2 \end{split}$$

IX.9.Calcul l'espacement des cadres

 $S_t \leq \min(20 \text{cm}, 15 \emptyset)$

 $S_t \le \min (20 \text{cm}, 15 \times 1.2 = 18 \text{cm})$

En prend $S_t = 15 \text{ cm}$

Figure IX.2 .Vue en face du ferraillage de la semelle

IX.10.Calcul des longrines :

IX.10.1.Introduction :Les longrines sont des éléments appartenant à l'infrastructure et qui servent à rigidifier l'ensembles des semelles.Elles sont soumises à des forces axiales de traction égale à :

$$F = \frac{N}{\alpha} \ge 20 \text{ KN}$$
 « Article10.1.1-RPA99 /VERSION 2003 »

Avec

N :effort normal maximal ; N=324.57KN

 \propto : Coefficient fonction de la zone sismique et de la categorie de site considérée ; \propto

$$= 12$$

F= $\frac{324.57}{12}$ = 27.04*KN* ≥20 KN

IX.10.2.Armature longitudinales en traction simple :

$$A_S = \frac{F}{\sigma_S} = \frac{F}{f_{e/\gamma_S}} = \frac{27.04}{348 \times 10^3} 10^4$$
 soit $A_S = 0.78$ cm2

 $A_{min} = 0.6\% B = 0.6 \times 10^{-2} \times 30 \times 35$ soit $A_s = 6.3$ cm²

Alors on ferraille avec A_{min} soit 8HA12 répartie sur toute la section qui correspond à As=9.04cm2

IX.10.3. Vérification de la condition de non fragilité

Pour qu'une section en béton armé soumise à la traction ou la flexion soit considérée comme non fragile, la relation suivante doit être vérifiée :

$$A_{s} \ge 0.23 \frac{B \times f_{tj}}{f_{e}} = \frac{0.23 \times 35 \times 30 \times 2.1}{348} = 1.45 \text{cm}2$$

 $A_{s} = 9.04 \text{cm}2 > 1.45 \text{cm}2$ (condition vérifiée)

IX.10.4.Armatures transversales :

Soit des cadres de diametres 8mm dont l'espacement est inferieur à ; min (20cm, 15ø) S_t \leq min (20cm, 15×0.8)=12cm on adopte un espacement de 10cm

Figure IX.3. Schéma du ferraillage des longrines

IX.11.Conclusion :

Cette dernière étape de notre étude nous a conduit a choisir des fondations isolées en béton armé.
Conclusion générale

Ce modeste travail nous a permis d'appliquer et d'approfondir toutes les connaissances acquises durant notre cursus universitaire.

La conception d'une structure métallique repose sur le dimensionnement aux états limites ultimes en tenant en compte des actions environnantes les plus sévères (surcharges d'exploitations, neige, vent).

Cette expérience nous a permis aussi de mieux comprendre le domaine de la construction charpente métallique, et de nous familiariser avec les différentes normes et règlements régissant le domaine de la charpente métallique tel que l'Eurocode 3, le CCM97,le RPA99/2003,le RNV99/2013.

Dans ce même contexte, il a été constaté que les actions du vent sont les plus défavorables dans les structures métalliques (effet du vent est plus important que l'effet du seisme).

Perspectives:

-Analyse non linéaire d'un bâtiment mixte en charpente métallique.

-L'effet du feu.

A la fin, ce projet qui constitue pour nous une première expérience dans ce vaste domaine ,il nous a permis d'acquérir des grandeurs très importantes pour mettre le premier pas dans notre vie professionnelle.

&Références bibliographiques

REGLEMENT

- ▶ Règlement neige et vent (RNVA version 2013), D.T.R C2-4.7.
- Règles parasismiques Algérienne (RPA99/Version 2003). D.T.R-B.C.2-4.8.
- Règle de calcul des structures métalliques (Eurocode03).
- ▶ Règles de conception et de calcul des structures en aciers (CCM97), DTR B.C.2.44.
- Document technique règlementaire des charges permanentes et surcharges d'exploitation (DTR B.C.2.2).

LIVRES

- Lahlou Dehmani ; Calcul des éléments resistants d'une constructions métallique selon l'Eurocode3-360p Anneé 2019 ,OPU,ISBN :878.9961.0.1589.6
- Baraka Abdelhak ;Cours en charpente metallique1 selon le règlement Algérien C.C.M.97 et l'Eurocode 3.-299 P Année2016 OPU,ISBN :878.9961.0.1.683.1
- Jean Morel ;Calcul des structures métalliques selon l'eurocode 3

Mémoires

- DEROUICHE LYDIA, OUZAICH MOUMEN, 2017.Etude d'un hangar en charpente métallique à usage de stockage. Memore de master 2 en Génie civil:univercité Abderrahmane MIRA-BEJAIA.220p.
- MOULOUDJ RAMADANE, LAHMEK ANIS, LAGAB LYNDA, 2018.Conception et calcul d'un hangar multiple avec deux ponts roulants. mémoire de master 2 professionnel en Génie civil : université de Mouloud Mammeri de TIZI6OUZOU.237p.

LOGICIELS

- Logiciel d'analyse des structures ROBOT 2018
- > AUTOCAD2016

Tableau	des armatures	

Φ (mm)	5	6	8	10	12	14	16	20	25	32	40
1	0,20	0,28	0,50	0,79	1,13	1,54	2,01	3,14	4,91	8,04	12,57
2	0,39	0,57	1,01	1,57	2,26	3,08	4,02	6,28	9,82	16,08	25,13
3	0,59	0,85	1,51	2,36	3,39	4,62	6,03	9,42	14,73	24,13	37,7
4	0,79	1,13	2,01	3,14	4,52	6,16	8,04	12,57	19,64	32,17	50,27
5	0,98	1,41	2,51	3,93	5,65	7,72	10,05	15,71	24,54	40,21	62,83
6	1,18	1,70	3,02	4,71	6,79	9,24	12,06	18,85	29,45	48,25	75,40
7	1,37	1,98	3,52	5,50	7,92	10,78	14,07	21,99	34,36	56,30	87,96
8	1,57	2,26	4,02	6,28	9,05	12,32	16,08	25,13	39,27	64,34	100,53
9	1,77	2,54	4,52	7,07	10,18	13,85	18,10	28,27	44,18	72,38	113,10
10	1,96	2,83	5,03	7,85	11,31	15,39	20,11	31,42	49,09	80,42	125,66
11	2,16	3,11	5,53	8,64	12,44	16,93	22,12	34,56	54,00	88,47	138,23
12	2,36	3,39	6,03	9,42	13,57	18,47	24,13	37,70	58,91	96,51	150,80
13	2,55	3,68	6,53	10,21	14,70	20,01	26,14	40,84	63,81	104,55	163,36
14	2,75	3,96	7,04	11,00	15,38	21,55	28,15	43,98	68,72	112,59	175,93
15	2,95	4,24	7,54	11,78	16,96	23,09	30,16	47,12	73,63	120,64	188,50
16	3,14	4,52	8,04	12,57	18,10	24,63	32,17	50,27	78,54	128,68	201,06
17	3,34	4,81	8,55	13,35	19,23	26,17	34,18	53,41	83,45	136,72	213,63
18	3,53	5,09	9,05	14,14	20,36	27,71	36,19	56,55	88,36	144,76	226,20
19	3,73	5,37	9,55	14,92	21,49	29,25	38,20	59,69	93,27	152,81	238,76
20	3,93	5,65	10,05	15,71	22,62	30,79	40,21	62,83	98,17	160,85	251,33

Section en cm² de N armatures de diamètre Φ (mm)

Tableau des profiles

Profile IPE

Caractéristique géométriques

			Dimen	aions			Masse par mètre	Aire de la section	Surface de peinture	
Profils	the s	b	· · ·		the second	h1	4			
	h	b	tw.	ų	,	d	P	A		
	mm	mm	mm	mm	mm	mm	kg/m	cm ²	m²/m	m²/t
IPE A BO	78,0	46	3.3	4,2	5	59,6	5,0	6,4	0,325	64,90
IPE 80	80,0	46	3.8	5,2	5	59,6	6,0	7,6	0.328	54,64
IPE A 100	98.0	55	3.6	4.7	7	74,6	6,9	8,8	0,397	57,57
IPE 100	100,0	55	4,1	5.7	7	74,6	8,1	10,3	0,400	49,33
IPE A 120	117,6	64	3.6	5,1	7	93,4	8,7	11.0	0,472	54,47
IPE 120	120,0	64	4,4	6.3	7	93,4	10,4	13,2	0,475	45.82
IPE A 140	137,4	73	3.8	5.6	7	112.2	10,5	13,4	0,547	52,05
IPE 140	140,0	73	4,7	6.9	7	112.2	12,9	16,4	0,551	42,70
IPE A 160	157,0	82	4.0	5,9	9	127,2	12,7	16,2	0.619	48,70
IPE 160	160,0	82	5,0	. 7.4	9	127,2	15,8	20,1	0.623	39,47
IPE A 180	177,0	91	4,3	6,5	9	146.0	15,4	19,6	0,694	45,15
IPE 180	180,0	91	5,3	8,0	. 9	146,0	18,8	23,9	0,698	37,13
IPE O 180	182.0	92	6,0	9.0	9	145,0	21,3	27,1	0,705	33,12
IPE A 200	197.0	100	4,5	7.0	12	159,0	18,4	23.5	0,764	41.45
IPE 200	200.0	100	5,6	8,5	12	159.0	22,4	28.5	0,768	34,36
IPE O 200	202.0	102	6.2	9,5	12	159.0	25,1	32,0	0,779	31.05
IPE A 220	217,0	110	5,0	7.7	12	177,6	22,2	28.3	0,843	38.0
IPE 220	220,0	110	5,9	9.2	12	177,6	26.2	33,4	0.848	32.3
IPE 0 220	222.0	112	6,6	10,2	12	177,6	29,4	37,4	0,858	29.2
IPE A 240	237.0	120	5.2	8,3	15	190,4	26.2	33,3	0.918	35,1
IPE 240	240,0	120	6.2	9,8	15	190,4	30,7	39,1	0,922	30,0
IPE O 240	242.0	122	7.0	10.8	15	190,4	34,3	43,7	0,932	27,1
IPE A 270	267.0	135	5.5	8.7	15	219.6	30,7	39,1	1,037	33,7
IPE 270	270.0	135	6.6	10.2	15	219,6	36,1	45,9	1.041	28.8
IPE 0 270	274.0	136	7.5	12.2	15	219.6	42.3	53.8	1.051	24.8

	Caractéristiques de calcul								Moment d'inertie de torsion	Moment d'inertie de gauchis-		
Profils	S. Kola	- k/vx =				ely et	1 4y/4y	iy -			272	sement
	ly	Wel.y	iγ	Wpl.y	Avz	lz	Wel.z	iz	Wpl.z	Avy	لر	l _w x10 ⁻³
	cm ⁴ .	ćm ³	cm	cm ³	cm ²	cm ⁴	cm ³	cm	cm ³	cm ²	cm4	cm ⁶
IPE A 80	64,4	16,5	3,18	19,0	3.1	6,85	2,98	1,04	4.7	4,1	0,42	0,09
IPE 80	80,1	20,0	3,24	23,2	3.6	8,48	3.69	1.05	5.8	5,1	0.70	
IPE A 100	141,2	28,8	4,01 4,07	33,0	4,4	13,11	4.77	1,22	7.5	5,6	0,77	0,28
IPE 100	171,0	34,2		39,4	5,1	15,91	5.78	1,24	9.1	6,7	1.20	0,35
IPE A 120	257,4	43,8	4,83	49,9	5,4	22,38	6,99	1,42	11,0	6.9	1.04	0,71
IPE 120	317,8	53,0	4,90	60,7	6,3	27,65	8,64	1,45	13,6	8,6	1.74	
IPE A 140	434,9	63,3	5,70	71,6	6.2	36,41	9,98	1,65	15,5	8,6	1.36	1.58
IPE 140	541,2	77,3	5,74	88,3	7.6	44,90	12,30	1,65	19,2	10,6	2,45	1.98
IPE A 160	689.3	87,8	6,53	99,1	7,8	54,42	13,27	1,83	20,7	10,2	1,96	3.09
IPE 160	869.3	108,7	6,58	123,9	9,7	68.28	16,65	1,84	26,1	12,8	3,60	3.96
IPE A 180	1062,7	120, 1	7,37	135,3	9,2	81,87	17,99	2,04	28.0	12,4	2.70	5,93
IPE 180	1317,0	146,3	7,42	166,4	11,3	100,81	22,16	2,05	34,6	15,3	4.79	7,43
IPE O 180	1505,2	165,4	7,45	189,1	12,7	117,23	25,48	2,08	39,9	17,5	6,76	8,74
IPE A 200	1591,5	161.6	8.23	181,7	11,5	117,18	23,44	2.23	36,5	14,7	4,11	10,53
IPE 200	1943,2	194,3	8.26	220,6	14,0	142,31	28,46	2.24	44,6	18,0	6,98	12,99
IPE O 200	2211,0	218,9	8.32	249,4	15,5	168,77	33,09	2.30	51,9	20,5	9,45	15,57
IPE A 220	2316,5	213,5	9,05	240,2	13,5	171,40	31,16	2,46	48,5	17,8	5,69	18,71
IPE 220	2771,8	252,0	9,11	285,4	15,9	204,81	37,24	2,48	58,1	21,3	9,07	22,67
IPE 0 220	3134,1	282,3	9,16	321,1	17,7	239,71	42,80	2,53	66,9	24,1	12,27	26,79
IPE A 240	3290,5	277.7	9,94	311.6	16,3	240,19	40,03	2,69	62,4	21,0	8,35	31,26
IPE 240	3891,6	324.3	9,97	366.6	19,1	283.58	47,26	2,69	73,9	24,8	12,88	37,39
IPE O 240	4369,3	361.1	10,00	410.3	21,4	328,39	53,83	2,74	84,4	27,9	17,18	43,68
IPE A 270	4917,3	368,3	11,21	412,5	18,7	358,00	53,04	3,02	82.3	24,6	10,30	59.51
IPE 270	5789,8	428,9	11,23	484,0	22,1	419,77	62,19	3,02	97,0	29,0	15,94	70.58
IPE 0 270	6947,1	507,1	11,36	574,6	25,2	513,27	75,48	3,09	117,7	34,9	24,90	87.64

Caractéristique mécaniques

Effort tranchant		
	$V_{\max} = \frac{ql}{2}$	$V_{\max} = 0.625q \frac{l}{2}$
Moment		
fléchissant		
	$M_{\rm max} = \frac{ql^2}{8}$	$M_{\rm max} = \frac{q(l/2)^2}{8}$
Flèche maximale	$f = \frac{5}{384} \frac{ql^4}{EI}$	$f = \frac{2.05}{384} \frac{q(l/2)^4}{EI}$

Sollicitations et flèches maximales pour les poutres sur 2 et 3 appuis.

r

Table F.1.2 Values of factors C1, C2 and C3 corresponding to values of factor k: Transverse loading cases							
Loading and support conditions	Bending moment diagram	Values of k	Valu	Values of factors			
	• • • • • • • • • • • • • • • • • • • •		C1	C2	C₃		
w		1,0 0,5	1,132 0,972	0,459 0,304	0,525 0,980		
<u>}~~~~~</u> €		1,0 0,5	1,285 0,712	1,562 0,652	0,753 1,070		
↑		1,0 0,5	1,365 1,070	0,553 0,432	1,730 3,050		
,,F ,,		1,0 0,5	1,565 0,938	1,267 0,715	2,640 4,800		
		1,0 0,5	1,046 1,010	0,430 0,410	1,120 1,890		

-		Buckling curve						
~	а	ь	с	d				
0,2	1,0000	1,0000	1,0000	1,0000				
0,3	0,9775	0,9641	0,9491	0,9235				
0,4	0,9528	0,9261	0,8973	0,8504				
0,5	0,9243	0,8842	0,8430	0,7793				
0,6	0,8900	0,8371	0,7854	0,7100				
0,7	0,8477	0,7837	0,7247	0,6431				
0,8	- 0,7957	0,7245	0,6622	0,5797				
0,9	- 0,7339	0,6612	0,5998	0,5208				
1,0	0,6656	0,5970	0,5399	0,4671				
1,1	0,5960	0,5352	0,4842	0,4189				
1,2	0,5300	0,4781	0,4338	0,3762				
1,3	0,4703	0,4269	0,3888	0,3385				
1.4	0,4179	0,3817	0,3492	0,3055				
1,5	0,3724	0,3422	0,3145	0,2766				
1,6	0,3332	0,3079	0,2842	0,2512				
1,7	0,2994	0,2781	0,2577	0,2289				
1,8	0,2702	0,2521	0,2345	0,2093				
1,9	0,2449	0,2294	0,2141	0,1920				
2.0	0,2229	0,2095	0,1962	0,1766				
2,1	0,2036	0,1920	0,1803	0,1630				
2,2	0,1867	0,1765	0,1662	0,1508				
2,3	0,1717	0,1628	0,1537	0,1399				
2,4	0,1585	0,1506	0,1425	0,1302				
2,5	0,1467	0,1397	0,1325	0,1214				
2,6	0,1362	0,1299	0,1234	0,1134				
2,7	0,1267	0,1211	0,1153	0,1062				
2,8	0,1182	0,1132	0,1079	0,0997				
2,9	0,1105	0,1060	0,1012	0,0937				
3,0	0,1036	0,0994	0,0951	0,0882				

Valeur de χ en fonction de λ

Facteurs de moment uniforme équivalent βM

,

Moment diagram	Equivalent uniform moment factor eta_{M}
end moments	
$M_1 \qquad \qquad$	$\beta_{M,\psi} = 1,8 - 0,7 \psi$
moments due to in-plane lateral loads	
1Mo	$\beta_{M,Q} = 1,3$
M ₀	$\beta_{M,Q} = 1,4$