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Abstract

In this research study, we investigated the properties of the double-half Heusler alloy (DHH),
K2NaRbAs;. We utilized the full-potential linearized augmented plane wave method (FP-
LAPW) with the generalized gradient GGA approximation and the GGA+ Modified Becke-
Johnson (mBJ) correlation potential to investigate the alloy’s structural, elastic, electronic,
magnetic, and thermoelectric properties. Our findings indicate that the alloy possesses
resistance to distortion and can endure reversible deformation. The calculated elastic
constants suggest that KoNaRbAs; is mechanically stable, ductile, and anisotropic, which is
supported by a three -dimensional representation of its elastic moduli. The total magnetic
moment of 2us demonstrates its half-metallic behavior primarily attributed to the presence, of
arsenic atoms. Furthermore, we conducted an analysis of the equilibrium structural
parameters, as well as the electronic, magnetic, and elastic properties of half-Heusler
compounds VMSb (M=Pd, Pt) using density functional theory (DFT). The theoretical results
revealed that both VMSb (M=Pd, Pt) compounds exhibit half-metallic behavior,
characterized by a total magnetic moment of 2ug consistent with the Slater-Pauling rule.

These half-Heusler compounds show promise as potential candidates for spintronic devices.

Keywords: Heusler alloy. FP-LAPW. mBJ. mechanically stable. half-metallic. magnetic

properties



Résumé
Dans cette étude de recherche, nous avons étudié les propriétés de l'alliage Heusler a double
moitié (DHH), KoNaRbAs,. Nous avons utilisé la méthode des ondes planes augmentées
linéarisées a plein potentiel (FP-LAPW) avec I'approximation GGA a gradient généralisé et
le potentiel de corrélation Becke-Johnson modifié GGA + (mBJ) pour étudier les propriétés
structurelles, élastiques, électroniques, magnétiques et thermoélectriques de l'alliage. Nos
résultats indiquent que l'alliage possede une résistance a la distorsion et peut supporter une
déformation réversible. Les constantes élastiques calculées suggerent que K:NaRbAs; est
mécaniquement stable, ductile et anisotrope, ce qui est soutenu par une représentation
tridimensionnelle de ses modules élastiques. Le moment magnétique total de 2 ug démontre
son comportement semi-métallique principalement attribué a la présence d'atomes d'arsenic.
De plus, nous avons effectué une analyse des parametres structurels d'équilibre, ainsi que des
propriétés electroniques, magnétiques et élastiques des composés demi-Heusler VMSb (M =
Pd, Pt) en utilisant la théorie de la fonctionnelle de la densité (DFT). Les résultats théoriques
ont révéle que les deux composes VMSb (M = Pd, Pt) présentent un comportement semi-
métallique, caractérisé par un moment magnétique total de 2ug conforme a la régle de Slater-
Pauling. Ces composes semi-Heusler sont prometteurs en tant que candidats potentiels pour

les dispositifs spintroniques.

Mots clés: Alliage Heusler. FP-LAPW. mBJ. meécaniquement stable. demi-métallique.

Propriétés magnétiques.



Ladle

LiexdiulK;NaRbAS; « (DHH) z 52 3all caaill i3 Heusler 4Sums (ailad Lu py ¢ Afiad) 4l oda 3
Al 5 panal) zotid) GGA i go (FP-LAPW) AlalSll cllSay) <l 53 jaall & sisall da gall 43 5k
Apnlalinall 5 431 5 IV 5 25 pall  AGel) (ailadll 8 gidasll Becke-Johnson (mBJ) Aasall GGA + bl )
Sl o gl Janii o (S g o 9l A gl lliad A pual) G ) L) Ul 55 Al liil) s Al 4y )y 5 5eSU
Ay pal Al Gy ¢ e ¢ BSHS it KoNaRDAS, of (o) & smaall &5 pall gl il 55 (ulSaid
G amall Cami 4S5k 2up @) oaaaliaall o all  Jlea) g & yall 43lalaal 21 3 Jfiais 2 502
G ALaYL ¢ sl Bl ciladaall Shlas Uy pal ¢ @y e s 5dle gyl @Y asas ) Wl g
A i 2aatils ¢ Heusler VMSD (M = Pd. Pt) cieas il jal & jall s Al s 5 SIY1 ailadl
sl Bl el « VMSh (M = Pd. Pt) xSl SIS of 4l gl chiS (DFT) A 5l 435))
Caai LSy ek Slater-Pauling. 5306 g 3855 Lo 2pp o8 Man) oullie ajm aa ¢ (ine
SPINtronic.s jeadl Culaisa (sl yaS 322 5 s2aHeusler

Labliaal Gal &l | S Cial WSilSie i o Heusler. FP-LAPW. 4w 4w ) cilalsl)



Table of Contents

=T | To% Ui o] o [OOSR I
ACKNOWIBAGMENTS ...ttt ettt neee s i
N oS - Vo OSSPSR ii
RESUME ...ttt ettt et e et e st e et e e s e e st e e ste e e st e e ate e e teeeneeeanee e taeenneeaneeenreeannes iv
S v
-1 0] (o) 041 ] £ SUSRSURRSTI vi
LISt OF TADIES ..ottt e e e e e ee e ree e X
LSE OF FIQUIES ...ttt ettt ettt e bt et et e e e nnee s Xi
LiSt OF ADDIEVIALIONS ... .eieieiiee et e et e et e e nnae e e e neeeenes Xiii
GENERAL INTRODUCTION
INTRODUGCTION. ... .t e e e e e s e e e e e e e e e e s s et e e e aeeeaaasansrannaeeeeeaaaans 1
CHAPTER I: MAGNETISM AND HEUSLERS ALLOYS
O 1o 0o [0 ot AT DO PP PP 4
[.2. Origins Of MagnetiC MOMENLS.......ccuiieiiieeiiie et e e e e e e e areeeanes 5
1.3. The different forms of MagnetiSM...........ccoiiiiiiiiie e 5
G T B g P To =) ] PRSP 6
1.3.2. ParamagneliSIM........veeiiieeeitiee ettt etee st e e sttt e et e e et e et e e et e e e ana e e e nnr e e e nnteeeane e e e 6
IR I = (0 = To 0 [=] L] PRSPPI 6
1.3.4. FITIMAGNETISITI...cciiiie ettt e et e et e e st e e e ent e e e antaeesnteeeaneeeenns 7
1.3.5. ANLITErTOMAgNETISIM ...t e e e a e e ra e e e e 7
[.4. MagnNetiC INTEIACTIONS ......cccuiieiiiee et e et e e st e e e et e e e anteeesrneeeanes 7
1.4.1. DIr€Ct EXCNANGE ... .vveeeiiee ettt ettt et e e et e e e st e e e et e e e anr e e e snaeeeaneeeanns 8
1.4.2.Super-eXchange INEIraCtioN ...........ccvuiiiiiie e i e 8
1.4.3 Double exchange INTEraCtioN ..........ccuveeiiuieeiiie e 9
1.5, SPIN POIAFIZALION ..ottt e e e e e s e e e aee e 11
1.6.Semi-metallic MALErIAlS .........c.viiiieiie e 11
1.6.1.Definition of @ half-metal ..o 11
L7 HEUSIEIS @lIOYS ...ttt e et e et e e e 12
1.8. Heuslers Alloys Information General..............coooviiiiiiiiiiiiic e 13
1.9. Nomenclature of HEUSIEIS @llOY ........c.vvvviiiiiiiicc e 14
1.9.1. Half-HEUSIEIS @llOYS. ...t 14

Vi



1.9.2. FUII-HEUSIEIS @lIOYS ... 14

1.9.3.Quaternery alloys- HEUSIEIS .........ooiiiieiii e 15
1.9.4.double Nalf-HEUSIEIS ......c..oiiiee e 16
1.10. Classification and crystal structure of Heuslers alloys...........c.cccooveiiiiiiiiniiiiciccnn 16
1.10.1 Crystal structure of half-Heusler alloys ..., 17
1.10.2. Crystal structure of full-Heusler alloys ... 18
1.11.Structural properties and order-disorder phenomena.............coooveiiiiiienicnie e 19
[.11. 1. Half-Heusler COMPOUNGS.........coiiiiiiiiiieiie e 19
[.11. 2. Full-Heusler COMPOUNGS .........ooiiiiiiiiiieiie e 21
1.12. Magnetism and HeUSIEr allOYS ..........ocviiiiiiiiiieise e 23
1.12.1. Ferromagnetism in half-metalS.............cccooiiiiiii e 25
1.12.2. The Slater—Pauling TUIB ..........c.ooiiii e 26
1.13. Origin of the gap in half-Heusler alloys ... 28
0 N o o] [o%: LA o] S PP ROPR VPP OUROPRPPROTS 29
L2141, SPINITONICS .ttt ettt ettt et ekttt e bb e e be e et e anbeennee s 30
1.14.2. Tunnel Magnetoresistance (TMR) ......cuvieiiiieiiie e 30
1.14.3. Giant Magnetoresistance (GMR) ..........cociireiiiie e 31
RETEIBICES ...ttt 33

CHAPTER I1:OVERVIEW OF CALCLUATION METHODS

I 1L o To ot Ao o PR PR VPP OURUPRPPRTS 38
[1.2.Schrddinger equation 0f @ CryStal ............cooiiiiiiii e 38
[1.3. Born—Oppenheimer approXimMatiOn ...........ccceciiureiiieeiiire e e e e e e e sre e e e seeeesreee s 40
[1.4.Hartee approXimMatiOn............coiuiieiiee et e e se e e e srae e e sae e e snae e e sbeeeannnee s 41
I.5.Hartree—FOCK approXimation ...........cueeiuiieiiiie it e e e e 41
1.6.Density FUNCLIONAI TNEOTY .....cccuviieiie et 42
1.6.1.Hohenberg's and Kohn's theOremsS............cooiiviiiii i 42
1.6.2.KOhN—Sham €QUALIONS ..........ocoiiiieiiie ettt e e e e ane e 43
1.6.2.1.Solving Kohn-Sham equations ..............ccoiieiiiiiei i 45
1.6.3. Functionality of the exchange and correlation ..............cccccooveiiiiie e, 46
1.6.3.1. Local Density ApproxXimation (LDA) ........ecoiiviiiee e 47
1.6.3.2.Generalized Gradient Approximation (GGA) ........eveeiiiiiiie e 48
1.6.3.3.The LDA and GGA approximations with spin polarization ................cccoceeveeninnnn. 48
1.6.3.4. The DFT + U approximation (L(S)DA+U and GGA+U) ........ccccevvvvveeiiiiiine e, 49

Vi



1.6.3.5. The modified Becke-Johnson potential (MBJ) .........coccvviiiieiiiiiiieeiee e 50

1.7. Calaluation IMETNOGS. .......cooueie e e e 51
1.7.1.The augmented plane wave (APW) Method ...........ccoveiiiiiiiiiiiiiiee e 51
1.7.2.Full Potential Linearized Augmented Plane Wave Method (FP-LAPW).................... 54
[.7.2.1.MUltiple energy WINAOWS..........ccuiiiiiiiieie et 55

.. TNEWIENZK COUE. ....ceieeieeiiie ettt ettt e e e et e e srae e e snte e e snaeeeanneeeanneee s 56
1.8.1.C0de INITIAHZALION. .....ciiiie it e s e et eennaeee s 56
1.8.2.Self-consistent CalCUIAtION. ...........ooiiiee e 57
1.8.3.Determination OF PrOPEITIES.........eeiiiiiie ettt 58
B C] (=] 1P 58

1 O 1o T [ (o o PR SURSURRPUR 63
[11.2.Computational METhOT:.........ooiiiee e 64
[11.3. RESUIS @Nd TISCUSSION: .. .veieeiiie ettt e et e e st e e st e e st e e anneee s 65
[11.3.1. double-half Heusler KoNaRDAS . .......ccviiiiiiiieiieie e 65
[11.3. 1.1 StrUCLUral PrOPEITIES ....c.vveeeiiie ettt ettt e e e e e et e et eeennee e 65
111.3.1.1.1The Crystal Structure of Heusler Alloys and Preferred Sites: ..........ccccccevvveiinnnnne 65
111.3.1.1.2 Structural optimizations and magnetic order ..........c.ccccoveeviveeviie s 66
111.3.1.1.3 Energy of formation (or enthalpy of formation) and energy of cohesion............ 67
[11.3.2.1 ElQSHIC PrOPEITIES .....vvee ettt e ettt et e e e et e e e st e e st e e anaeee s 69
111.3.1.2.1 Debye temperature ©p and elastic wave VeloCities ............ccceevveeviiieeviiec e, 74
[11.3.3.1 ElECIIONIC PrOPEITIES. . ecviee et ettt e etes ettt e et e e rtte et e e et e e et e e s e e st e e staeeanneeeas 75
[11.3.3.1.1 BANU SEIUCTUIES: ....eetiieiiie ittt sttt ettt anaeenree s 75
111.3.3.1.2 Densities Of eleCtroniC StAtES: ........ccvveiiiiiie e 76
[11.3.4.1 MagNEtiC PrOPEITIES: ....cvveeeieieeeciiee et e e ettt e e rtre et e e et e et e e et e e e s e e e snae e e sraeeaaeeeas 77
[11.3.5.1 ThermoeleCtriC PrOPErtieS: .......cccuvieiiie it 78
111.3.2. half-Heusler VIMSD (M = Pd, PL)...c.uiiiiec e 82
[11.3.2.1 StruCtUral PrOPEITIES ......vveeeiiie ettt ettt e ane e 82
111.3.2.1.1The Crystal Structure of Heusler Alloys and Preferred Sites ...........cccccoevvveinnnnn. 82
111.3.2.1.2 Structural optimizations and magnetic order: ............cccooveeviveeiiie v 82
[11.3.2.2 EIQSTIC PrOPEITIES: ..o ettt e e st a e st e e e s sntaee s 84
111.3.2.2.1 Debye temperature ©p and elastic wave VElOCIties............ccceeviiiiieiiieeiinn 87
[11.3.2.3 MAQGNELIC PrOPEITIES ... .vviei e it e ettt e e et e st r e e st ba e e e s nataees 89

viii



[11.3.2.4 EIECtIONIC PrOPEITIES. . ..ottt 90

111.3.2.4.1 Electronic band StIUCLUIE ...........ooiiiiiiiii e 90

[11.3.2.4.2 DENSITIES OF STALES: ...cviieeiiiie ettt e e snbee e anaee e 91

111.3.2.4.3 Effect of pressure on band Structure properties..........occvevveeiieiieenineeneeniiennens 93

B C] (=] 0TSSR 96
GENERAL CONCLUSION

(00 0] 13 (o o SR SPR SRR 98



List of Tables
Table.l.1 The different possibilities of occupation of non-equivalent sites in the half- Heusler
1L U0 (T £ O T RO 18
Table.l.2 Occupation of sites, general formula, type of structure (according to different
databases) for different atomic orders and group space of compounds half-Heuslers......20
Table.l. 3 The different structures of full-Heuslers compounds ............c.ccooeviieiiienieneee, 22
Table.l11.1 The valence states and RMT radii of the atoms in the investigated materials.64

Table.l111.2 The different possibilities of occupation of non-equivalent sites in the Hlef-
Heusler Cyp structure, for the studied compounds KNaAs, KRDAS............cccccoviniiinnn, 66
Table.l11.3 Calculated lattice parameter (A), bulk modulus (GPa), its derivative pressure, and
formation energies E_formation(Ry) for KoNaRbAs; in their FM phase with structure
11, 0L RO PP PP 69
Table.l11.4 Calculated elastic constants Ci1, C12, C13, Cas, Cas, Ces, bulk B, machinability
index B/Cas, Shear G, Young E moduli, hardness H (in GPa), anisotropic parameter A
, B/G , Poison’ s ratio v, for K.NaRbAs; in its structural and magnetic ground states. ...70
Table.ll11.5 Calculated total, atom-resolved and interstitial magnetic moments (in pg) in the

unit cell for KoNaRbAs; in its structural and magnetic ground States. ...........cccccevvveerinnn, 78
Table.111.6 Possible atomic arrangements of the half- Heusler compounds VMSb (M= Pd,
) P PP TR TR 82

Table.111.7 The calculated values of lattice parameter (A), bulk modulus (GPa), and its
pressure derivative, the minimum energy (Ry) of both compounds VMSb (M=Pd, Pt)...84
Table.111.8 The elasticity constants Cij (in GPa), the calculated elasticity constants: bulk B,
shear G and Young moduli E (in GPa), anisotropy parameter A, B/G ratio, and Poison’s
ratio v, 6p temperature of Debye for VMSb (M = Pd and Pt) compounds....................... 86
Table.l111.9 The calculated transverse and longitudinal elastic wave velocities, the average
wave velocity (m.s?) , the temperature of Debye (K) , and the melting temperature for
VPdSh and VPtSh (K) COMPOUNGS. ......cuvveeiiiieeiiie e e e 88
Table.l11.10 Total and partial magnetic moments (WC- GGA, LSDA+U, TB-mBJ) in (us)
PEI UNTE CEIL .ot e e e et e e et e e et e e e snb e e e snteeennreeeas 89
Table.l11.11 The calculated lattice constant(A), electronic band gaps for spin down (eV) and
the electronic band structure nature of VPdSb and VVPtSb compounds. .............cccveenee. 93



List of Figures

Figure.l.1 demonstration of the magnetic moment associated with (a)an orbiting electron and

(D)@ SPINNING EIECTION ...t 5
Figure.1.2 the different types of magnetic behaviour. ...........ccocieiiiiiiiiicn e 6
Figure.l.3 The Bethe-Slater curve presents the relationship of the exchange integral and the

ratio of the interatomic distance rij to the radius of the orbital “rq” .........ccccocveviiverinrennn. 8
Figure.l.4 The semi-empirical Goodenough-Kanamori-Anderson super-exchange rules. ....... 9
Figure.1.5 Double exchange between Mn* and Mn*™............ccccoovriirieessesiieceees 10

Figure.l. 6 schematic representation of the densities of states and spin polarization of a non-
ferromagnetic metal (A), a ferromagnetic material (B) and a half-metallic material (C). 12
Figure.l.7 Periodic table of Heusler compounds. The huge number of full Heusler compounds
can be formed by combination of the different elements according to the color scheme. X

and X" are in yellow, Y is blue, and Z 1S green .........cooovveeiie e 14
Figure.l.8 Representative of the cubic meshes of a Heusler (Full-Heusler) and a half Heusler
(NAIT-HEUSIEr) @HIOYS . ... 15
Figure.1.9 Crystal structure of quaternaryHeusler alloys............ccocviiiiiiiniieniee 16
Figure.1.10 Crystal structure of double half-Heusler alloys ............cccccoviiiiiiiiiiie, 16
Figure.l.11 Composition of the Cyp crystal structure of the Heusler alloy. ............c..ccceeee 17
Figure.l.12 The two structures (regular and inverse) for Heusler alloys based on Mn;
depending on the position of the element Y. .......coovivi i 19
Figure.l.13 Reverse Heusler structure CuHg.Ti (a), quaternary structure LiMgPdSn(b) [53].
...................................................................................................................................... 19

Figure.l.14 Overview of the most important types of disorder that can occur in the semi-
Heusler structure: (a) CaF»-like disorder, (b) NaTl-like disorder, (c) Cu2MnAl-like

disorder, (d) CsCl-like disorder , and (e) tungsten-like disorder. ..........ccccccevvvevirirerinnnn, 21
.Figure.l.15 Crystal structures of full-Heusler compounds.corresponding to the various types
OF SEIUCLUIES[D8]. .. evee ettt et e et e e e e st e e e nee e 23

Figure.l. 16 (a) XYZ half-Heusler alloys with only one magnetic sub-lattice since only the
atoms in the octahedral locations carry a localized magnetic moment.a magnetic moment.
In (b) Heusler alloys of the X2YZ type, we have two magnetic sub-lattices. There are ma

sub-lattices where we can find a ferromagnetic or antiferromagnetic coupling. .............. 24
Figure.l.17 Band structure for (a) conventional ferromagnetic and (b) half-metallic material.
...................................................................................................................................... 25

Figure.l1.18 Schematic illustration of the density of states for: (a) metal, (b) half-metal, (c) a
metal (spin-polarized), (d) ferromagnetic compound, (e) half-metallic ferromagnetic
compound, and (f) half-metallic ferromagnetic compound. (1) majority spin, (|)minority
) 011 USSR PUPPP 26

Figure.l.19 The Slater-Pauling curve for 3d transition metals and their alloys. Experimental
values are given for some Co2-based Heusler alloys for comparison. (A1—xBx alloys are

ADDreVIated @S AB). ... 27
Figure.l.20 The Slater-Pauling curve, (a) the total magnetic moment of half-Heusler alloys
(b) of Full-Heusler alloys as a function of the total number of valence electrons. ........... 28
Figure.l.21 Density of states of the half HeuslerNiMnSb alloy ..........cccccccooiiiiiiiinn, 29

Xi



Figure.1.22 Schematic illustration of the origin of the gap in the spin down channel in half-

HEUSIEE @HHOYS. ...t 29
Figure.l.23 Schematic of the TMR effect in an MTJ. During tunneling, electron spin. ......... 31
Figure.l.24 Giant magnetoresistance junction (the two states, parallel and antiparallel)........ 32
Figure.ll.1 Self-consistent iteration process used to solve Kohn Sham equations............. 46

Figure.l1.2 Representation of Muffin-Tin “MT” potential. Diagram of the distribution of the

unit cell in the atomic sphere and in the interstitial region.....................ocoiin. 53
Figure.11.3 Multiple energy WINQOWS............coiiiiiiiiiieiii et 55
Figure.l1.4 Diagram of the WIen2K COUE...........coiiiiiiiiiiiiiie e 58
Figure.l11.1Structure representation of KoNaRbAsxcompound............oceeeevveienieienicieenene. 65

Figure.l11.2 Calculated total energy of KRbAs and KNaAs compounds as a function of the

volume for FM, NM, and AFM PhaSes. .....ccuueeiiireiire e seee e 66
Figure.ll11.3 Calculated total energy of K:NaRbAs, compound as a function of the volum..67
Figure.ll1. 4 Phonon dispersion curve of the KaNaRbAS2 compound. .........coccvevveiiieennenne 68
Figure.l11.5 3D graphical representation of (a) bulk, (b) Young's and (c) shear moduli and(d)

Poisson’s ratio of DHH KoNARDAS . ......cviiiiiiiiiiiiieee ettt 73
Figure.l11.6 Calculated band structure of KaNaRbAs, compound in both (a, ¢) spin-up and (b,

d) spin-down states by (a,b) GGA and (c,d) GGA+mBJ approximations........................ 76
Figure.l11.7 Calculated DOS of KoNaRbAs, compound in both spin-up and spin-down states

by GGA and GGA+MBJ approXimations. ..........eeervreeiiieeeiiieesiiresiiressneesssneeeseeeesnneens 77
Figure.l11.8 Temperature dependence of the Seebeck coefficient of the spin up and spin dn

channels Of KoNBRDAS . ......oiiiii e 80
Figure.l11.9 Temperature dependence of the electrical conductivity for the spin up and spin

dn channels 0f KoNARDAS . ......ocviiiiii s 81
Figure.l11.10 Temperature dependence of the electronic thermal conductivity in the spin-up

and spin-dn channels of KoNaRbAS; DHH alloy. .........cvveoiiee i 81
Figure.l11.11 Different types of half-Heusler Structures. ............cccocvevviveeiiie v, 82
Figure.l11.12 Calculated total energy of VPdSb and VPtSb compounds in their FM and NM

phases as a function of the VOIUME. ... 83
Figure.l11.13 3D-representation of Young's modulus of both compounds: a) VPdSb and b)

N PESD. et 87
Figure.ll11.14 The band structure of the VPdSb compound using: WC- GGA, LSDA+U, and

TBMBU. .ttt 91
Figure.111.15 The band structure of the VPtSb compound using: WC- GGA, LSDA+U, and

TBMBU. .ttt et e bt et 91
Figure.l11.16 Total and Partial DOS of the VPdSb and VPtSb compounds obtained by the

TB-MBJ @PPIOACK. ... .ot 92
Figure.l11.17 Band structure of VPdSb alloy (in the 0-20 GPa range) at optimized lattice

(010] 051 121 | SO PP PO TP PP TOPPPPTRPPPP 94
Figure.l11.18 Band structure of VPtSb alloy (in the 0-20 GPa range) at optimized lattice

(010] 15121 | SO T TP PR OPP PR PP 94

Xii



List of Abbreviations

GMR giant magneto resistance.

TMR Tunnel magneto resistance.

Tc Curie temperature.

P spin polarization.

Mtot Total magnetic moment.

DFT Theory of density functional (densityfunctionaltheory)

LSDA+U approximation of local spin density (Local Spin Density Approximation)
GGA approximation of the generalized gradient (generalized gradient approximation)
MBJ Beck-Johnson modified (modified Beck-Johnson)

EF  Energy of Fermi.

DOS States density (Density of States)

TDOS/PDOS Total/Partial States Density (Total/Partial Density of States)
FP-LAPW Linearized augmented plane waves at full potential.

SCF self-consistent cycle.

ZB  Brillouin Zone

B  Modulus of compressibility.

Up/Dn Spin Up/Spin Down.

FM  Ferromagnetic.

AFM Antiferromagnetic.

Xiii






GENERAL INTRODUCTION

INTRODUCTION
Technological and industrial development depends heavily on the search for new materials

and alloys from the periodic table of elements based on the natural law, which affirms that the
combination of two different materials does not present a combination of their properties but
rather gives rise to new characteristics physics specific to the alloy [1].

Heusler alloys have been known for their unique properties and potential applications in
various fields. These alloys are made up of three different elements, and their composition can
be manipulated to create specific properties that make them ideal for various applications.
They were discovered in the late 19th century by a German mining engineer named Friedrich
Heusler. Heusler was investigating the properties of certain minerals when he discovered an
unusual compound made up of Co, Mn, and Al. He found that this compound is a

ferromagnetic material, Whereas its elementary constituents are not ferromagnetic [2].

Researchers have been attempting to deepen their knowledge of the behavior of HMF, in
order to understand, predict, and create new half-metallic materials due to their promising
potential applications in spintronic devices [3], magnetic tunnel junctions, magnetic disk
drives, spin injection devices, and nonvolatile magnetic random access memories [4]. Ideal
HM ferromagnets exhibit a metallic nature in one spin channel ("up™ or "down") and a
semiconducting (or insulating) nature in the other spin channel, thereby revealing a 100% spin
polarization at the Fermi level [5] with an integer value of the magnetic moment. The HMF

nature was first determined in half-Heusler alloys such as NiMnSbh and PtMnSb [6, 7].

The general formula for these alloys is X2YZ, which crystallizes in the Loi structure. In
addition, the half-Heusler type XYZ compounds, which crystallize in the C1p phase, has also
been widely investigated. These compounds have Wyckoff positions, with X in position 4a, Y
in position 4c, and Z in position 4b [8, 9] .The half-Heusler-phase has attracted the attention

of many researchers due to its ability to easily accommodate a ternary composition.

Recently, a novel class of Heusler alloys, named double half-Heusler alloys (DHH), has been
discovered, inspired by the conception of double perovskites A2B'B"Os. They could be
thought of as a collection of two half Heuslers of formula. It is worth noting that the first
prediction of this class of materials was made by Anand et al. [10]. They investigated a large
class of relatively unexplored DHH compounds, which have substantially lower lattice

thermal conductivities due to their crystal chemistry. Their work presented a reliable method
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for identifying low-thermal-conductivity half-Heuslers and highlighted a broad composition
space for their potential applications.

Simulation methods have added a new dimension to scientific investigation of physical or
chemical phenomena. Ab-initio methods have become a fundamental tool for calculating
properties of complex systems, replacing expensive or dangerous experiments. These
calculations methods are based on the density functional theory, theory (DFT) . Among these
methods is the FP-LAPW (augmented plane wave) method [11], which has been highly
successful in predicting structural, magnetic, electronic, thermoelectric, thermodynamic, and

optical properties.

The objective of our work is to present the structural, elastic, electronic, magnetic, and
thermoelectric properties of the K:NaRbAs; DHH alloy and compare them with those of its
parent HH alloys, KNaAs and KRbAs [12].In the second part of this study, we used full
potential linearized extended plane wave (FP-LAPW) and generalized gradient approximation
(GGA) within density functional theory (DFT) to investigate the structural, electronic, elastic,

and magnetic properties of two half-Heusler VMSb compounds (M = Pd, Pt)
The work that we present in this dissertation consists of three chapters:

> In the first chapter we recall certain notions related to magnetism as well as the
different types of magnetism. and presents generalities on Heusler alloys. We also
present some applications related to ferromagnetic compounds in technology such as
GMR and TMR.

» The second chapter is dedicated to the density functional theory (DFT) which
constitutes the basis of the ab initio calculation, to the FP-LAPW methods, and to the
different approximations used in our study. Finally, an overview of the functionalities
of the different programs implemented in the Wien2K code, which we used, is
presented.

» The third chapter will be devoted to the results of our work on the double half-Heusler
KoNaRbAs; compounds and two half-Heusler VMSb compounds (M = Pd, Pt). We
will present all the properties, in particular the structural, electronic, elastic and
magnetic properties obtained by using the GGA method (the General Gradient

Approximation) for the exchange and correlation interactions.
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I. 1. Introduction

Heusler alloys materials that possess magnetic properties, such as the ability to attract or
repel other magnets. these properties arise from the presence of magnetic domains within the
material, with are regions where the atomic moments are aligned. Magnetic materials are of
great economic importance, with applications ranging from information storage and energy

conversion to medical imaging and sensing

Recent research has focused on the synthesis of new materials with superior magnetic
performance. An important discovery was the observation that the resistance an electron faces
when passing through a polarized layer depends on its spin relative to the magnetization of the
layer. This phenomenon, called spin-dependent transport, allows electron currents to be

filtered according to their spin configuration

The atomic structure of a material determines its magnetic characteristics. In particular, the
magnetic moment of each atom is influenced by its electron configuration, which in turn is
influenced by the arrangement of its constituent subatomic particles. By manipulating the
atomic structure of a material, researchers can control its magnetic properties and design

materials with specific applications in mind.

Magnetic materials have many applications in modern technology. For example, they are used
in the construction of hard drives, which store digital data by magnetizing regions of thin film.
Magnetic materials are also used in electric motors, where they convert electrical energy into
mechanical motion, and in transformers, where they convert electrical energy from one
voltage level to another. Magnetic materials are also important for medical applications, such
as magnetic resonance imaging (MRI), which uses strong magnetic fields to produce detailed

images of the human body.

In conclusion, the study of magnetic materials is a dynamic and important field with many
potential applications. By understanding the science behind these materials, researchers can
design new materials with improved magnetic performance and explore new applications for

these materials in various fields of science and engineering.
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I.2. Origins of magnetic moments
The term "magnetism" refers to the set of phenomena exhibited by materials that are attracted

or repelled by an external magnetic field. Magnetism is a general property of matter, but it is
particularly pronounced in certain materials called magnetic materials. The cause of this
phenomenon is the spins of the electrons, and to a lesser extent, their magnetic moment
orbitals. Generally, the electrons of an atom tend to organize themselves according to the
Pauli exclusion principle and Hund's laws, which give rise to magnetism. The orbital motion
of the electrons is analogous to the current in a loop of wire. In addition, a magnetic spin

instant is associated with a rotating electron.

Magnetic monent

"“-______Q -7 Direction
\\ | of spin.

blectron atomic nucleus

| electron
a ]

Figure.l.1 demonstration of the magnetic moment associated with (a)an orbiting electron and
(b)a spinning electron.

I.3. The different forms of magnetism
Most of the magnetism in atoms within matter arises from their incomplete electronic shells.

In condensed matter, the spin moments of atoms are coupled through exchange interactions
that have an electrostatic origin. These interactions are a result of the overlapping of electrons’
orbitals around the nucleus. A magnetic field tends to align the magnetic moments in the
direction of the field. The order of the moments is determined by the competition between
exchange interactions and thermal agitation, resulting in a collective behavior responsible for
various magnetic behaviors such as diamagnetism, paramagnetism, ferromagnetism,
ferrimagnetism, and antiferromagnetism. We will outline the characteristics of each of these

categories of materials.
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Figure.1.2 the different types of magnetic behaviour[1].

1.3.1. Diamagnetism

Diamagnetic materials consist of atoms that all have complete electronic shells and do not
possess a permanent magnetic moment. If a diamagnetic material is subjected to a magnetic
field (H), all of its electrons are oriented in the opposite direction of the magnetic field
because the spinning electrons generate a type of electric charge. This diamagnetic
phenomenon appears in all materials, but it is sometimes masked by other effects such as

paramagnetism, ferromagnetism, and antiferromagnetism when they coexist in the material

2.

1.3.2. Paramagnetism

If a material medium does not exhibit spontaneous magnetization, but has weak interactions
between the magnetic moments compared to thermal agitation, these interactions become
negligible when subjected to an external magnetic field. In the absence of a magnetic field,
the moments can point in any direction. However, the magnetic moments tend to orient
themselves according to the field direction when subjected to a magnetic field. The
magnetization is proportional to the excitation H applied: M = xH, where X is the magnetic
susceptibility. Paramagnetism is temperature-sensitive. The initial susceptibility is positive

and becomes infinite at absolute zero. It decreases as the temperature increases [3].

I.3.3.Ferromagnetism

The theory of how atoms in a lattice can interact to create magnetic moments, known as
ferromagnetism, was first proposed by Fritz Weiss in 1907. In quantum mechanics, the
Heisenberg model describes the parallel alignment of magnetic moments in terms of the
exchange interaction between neighboring moments. In classical theory, the presence of a
molecular field within the material determines how the material responds to a magnetic field.
At room temperature, Fe, Co, and Ni are ferromagnetic, but above their respective Curie-
Weiss temperatures (Tc), the susceptibility varies according to the Curie-Weiss law [3, 4]. As
thermal agitation increases, the degree of alignment of the atomic magnetic moments

decreases, and the material becomes paramagnetic.

6
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I1.3.4.Ferrimagnetism

A ferrimagnetic body is an antiferromagnet with two sublattices carrying unequal moments
[5, 6] . This results in a spontaneous magnetization of the material. It differs from
antiferromagnetism, for which the resulting magnetic moment is zero, and from
ferromagnetism, for which it is zero. Spontaneous magnetization results at the microscopic

level from a parallel arrangement of magnetic moments.

In the absence of a magnetic field, the magnetic moments of the crystal ions align antiparallel
inside the Weiss domain, but the opposite magnetic moments are unequal and do not
completely compensate for each other.In the presence of an external magnetic field, the
magnetic moments tend to align in the direction of the magnetic field. As for ferromagnetic
materials, ferrimagnetic materials have a spontaneous magnetization below the Curie-Weiss

temperature and become paramagnetic above this temperature.

I.3.5.Antiferromagnetism

Antiferromagnets are often ceramic materials made of transition metal oxides, oxygen, or
other compounds.The exchange contact between nearby atoms produces an antiferromagnetic
alignment of atomic magnetic moments in antiferromagnetic materials, in contrast to
ferromagnetic materials. The material's overall magnetization is then zero. These materials
have a positive magnetic susceptibility. However, it is typically smaller than ferromagnetic
materials. At present, only one element in the atomic number that is antiferromagnetic at

ambient temperature is chromium.

1.4. Magnetic interactions

Diluted magnetic materials do not interact with magnetic moments. Paramagnetic materials
are used. Interactions, however, appear to be conceivable as the density of magnetic moments
grows. The magnetic properties of manganites are controlled via direct exchange interactions
(super-exchange and double exchange) between the spins of Mn ions via oxygen ions. This
contact, known as Heisenberg's exchange interaction, is important for organizing the spins
into parallel (ferromagnetic material) or antiparallel (antiferromagnetic material). The
mechanism most often employed to understand magnetic exchange interactions will be

presented in the next section.
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1.4.1. Direct exchange

The exchange integral Jgij) is the strength of the interaction between the localized spins Si and
S;. It depends on the distance between the two atoms, the overlap between the electron wave
functions of the atoms, and the electron configuration of the atoms. The indirect exchange
interaction arises from the virtual hopping of electrons between neighboring atoms via non-
magnetic atoms or through delocalized states [7]. This mechanism is known as superexchange
interaction and is a key mechanism for the magnetic properties of many materials, including
manganites. In some cases, the superexchange interaction can be mediated by mobile charge
carriers, as in the case of double exchange interaction. The Heisenberg Hamiltonian is a
simple model used to describe magnetic interactions in materials, but more complex models

are often needed to capture the full range of magnetic phenomena in real materials.

Jij
1 Co
- Fe @
) Ni
[
0O =

® NMn I r:i
P Cr

Figure.l.3 The Bethe-Slater curve presents the relationship of the exchange integral and the

ratio of the interatomic distance rij to the radius of the orbital “rg” [8].

1.4.2.Super-exchange interaction

Super-exchange is a type of interaction between two neighboring magnetic ions, mediated by
an intervening non-magnetic ion, such as oxygen. This interaction is based on the exchange of
electrons between the two magnetic ions via the intervening ion. In contrast to direct
exchange, the strength of the super-exchange interaction depends on the distance between the
magnetic ions and the strength of the intervening ion's coupling to the magnetic ions. Super-
exchange interactions are usually antiferromagnetic, as in the case of LaMnO3[9, 10]crystals,
where the interaction between two manganese ions is mediated by an oxygen ion. The crystal
field In Figure 1.4.splitting of the 3d electronic levels of transition metal ions can also play a

role in determining the strength and nature of the super-exchange interaction.
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Case orbital configuration super-exchange coupling

strong antiferromagnetic coupling

4 weak antiferomagnetic coupling

weak feromagnetic coupling

Cation Mn™

A%
B
- Half-filled t2g orbitals and one eg orbital at

.half filled pointing in the direction of the O anion

Cation Mn™

&
AN

-

Half-filled t2g orbitals and one empty eg orbital
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Anion O

OO
Orbital 2p.

Figure.l.4 The semi-empirical Goodenough-Kanamori-Anderson super-exchange rules.

1.4.3 Double exchange interaction
In transition metal oxides, the exchange interaction between ions is primarily due to the

hybridization of transition metal d-orbitals with the p-orbitals of the neighboring oxygen ions.
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The nature of this interaction depends on the relative energies and electron configurations of
the d and p orbitals involved.

In the case of transition metal oxides like Lai-xCaxMnOgz or Laix SrxMnQOs, the Mn ions can
exist in two different valence states, Mn*® and Mn*4, depending on the doping level. The Mn*3
ions have a total spin of 2, while the Mn* ions have a total spin of 3/2. Figure 1.5

Due to the hybridization of the d and p orbitals, the Mn*® and Mn** ions can interact via a
ferromagnetic double exchange interaction. This arises from the alignment of the spins of the
Mn*3 and Mn*™ ions, which leads to a lowering of the total energy of the system. This

interaction is essential for the ferromagnetic behavior observed in these materials.

In addition to the double exchange interaction[11], there can also be antiferromagnetic
superexchange interactions between ions of the same valence. These interactions arise due to
the exchange of electrons between neighboring ions via an intermediate oxygen ion. The
strength and nature of the superexchange interaction depend on the geometry and electron

configuration of the ions involved.

Therefore, in the LaixCaxMnOsz alloy, both antiferromagnetic superexchange interactions
between ions of the same valence and ferromagnetic double exchange interactions between

ions of different Valen.

P+ 02 \%i | alad
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Figure.1.5 Double exchange between Mn*3 and Mn™.
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L.5. Spin polarization

Spin polarization, or the difference between the density of states for the spins "up" and
"down," has not yet been explained by a model, but one may have tried to assume that it is a
property of the material. Because the processes of spin polarisation are so complex, no model
has yet been able to adequately describe them. Its discovery enables practical uses of this
phenomenon. The ferromagnetic/insulator [12] interface determines the spin polarization of
an electrode, and the kind of barrier can alter the value of the spin polarization. A
superconducting tip can be used to measure Andrew's reflection to measure spin polarization,
or junctions can be used to measure conductance or magnetoresistance. Speaking of the spin
polarisation of material only makes sense if the nature of the barrier is specified. The value of
the polarisation depends on the method of measurement and also on the temperature. It is
therefore necessary to strictly use the same measurement technique and devices for different

materials to determine their spin polarization.

I.6.Semi-metallic materials

1.6.1.Definition of a half-metal

De Groot and his collaborators [13] discovered the concept of a ferromagnetic half-metal
whose definition is relatively simple. It is a material characterized by the fact that at the Fermi
level, there is only one spin population. Therefore, conduction is ensured only by "up” or
"down™ spins. In a half-metal, according to de Groot, only the electrons of a given spin
orientation (up or down) are metallic, while the electrons of the opposite spin orientation
exhibit insulating behavior. In other words, half-metals have a spin polarization of 100% since

they contribute only to the conduction of either spin "up™ or spin "down" electrons Figure 1.6.

11
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Figure.l. 6 schematic representation of the densities of states and spin polarization of a non-
ferromagnetic metal (A), a ferromagnetic material (B) and a half-metallic material (C).

For a half-metallic material, the Fermi level passes through the gap energy for one spin
direction and an energy band for the other direction. A half-metallic material can be
considered magnetic for the majority of spins and a semiconductor for the minority spin. This
discovery was made by performing band calculations on compounds from the half-Heusler
family, specifically on NiMnSh. Researchers predicted the band structures, which were
consistent with predictions made from earlier work on PtMnSb [14]. A research project was

conducted to discover new half-metallic materials using band calculations.

Some examples of half-metals include CrO2[15], Fe304[16], La 07Cao3sMnO3[17], FexCo1xS2
[18] , CooMnX (X = Si, Ge) [19], CuV2Ss, and CuTi»S4[20] CrAs[21], as well as compounds
from various crystallographic families, including half-Heusler, Zn-blende compounds [22],
and others with similar structures. Of particular interest is their potential integration into

semiconductor structures.

I.7.Heuslers alloys

The combination of Heusler alloys exhibits a wide range of electronic and magnetic
properties. They are of particular importance in the context of this thesis due to their excellent
characteristics for spin electronics. Furthermore, they are being investigated for various
applications, including thermoelectric and solar. In this chapter, we will provide a brief

review of Heusler alloys, which are part of the series of alloys covered in this study. We will

12
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discuss their various structures, principal features, and possible applications. We will also
define the numerous elements that constitute Heusler alloys.

I.8. Heuslers Alloys Information General

Heusler alloys were first developed by Friedrich Heusler, a German scientist, in 1903 [23]. He
discovered that adding an "sp™ element (Al, In, Sn, Sb, or Bi) to a Cu-Mn alloy renders it
ferromagnetic, even in the absence of magnetic elements. This discovery gave rise to a new
class of materials, paving the way for future technologies [24, 25]. In 1963, it was determined
that pure Mn, which has an antiferromagnetic order, is the major component that contributes
to the magnetic moment of spin in this alloy [26]. This class of materials, known as Heusler
compounds or alloys, presently consists of a vast collection of over 1000 discovered

compounds exhibiting a broad range of magnetic properties.

The first class of Heusler alloys comprises ternary semiconductor or metallic materials with a
1:1:1 type stoichiometry (also known as half-Heusler "Half-Heusler™) that have a band gap
around the Fermi level in the energy band diagram solely for spin up or spin down. This type
of material has been extensively studied as it can optimize the effectiveness of spintronic
devices. The second type, represented by the general chemical formula X>YZ, where X and Y
are transition elements and Z is a semiconductor or a non-magnetic material, is of the 2:1:1
type (known as "Full-Heusler"). The following diagrams illustrate the unlimited number of

compounds that can be formed by combining practically any element from the periodic table.

13
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Figure.l.7 Periodic table of Heusler compounds. The huge number of full Heusler compounds
can be formed by combination of the different elements according to the color scheme. X and

X' are in yellow, Y is blue, and Z is green [25].

1.9. Nomenclature of Heuslers alloy

1.9.1. Half-Heuslers alloys

Alloys in this family have a chemical composition of XYZ. In 1983, de Groot and his
colleagues [27] discovered a half-Heusler alloy of the NiMnSb type[28]. Half-Heusler
compounds can be viewed as consisting of two parts, one covalent and the other ionic.
Therefore, the X and Y atoms exhibit distinct cationic properties, while Z is the anionic
counterpart[29] . The X and Y elements can be main group elements, transition metals, or rare
earth elements, while the element Z belongs to the second half of the classification period and
includes elements such as Ge, Sn, and Sh. Examples of half-Heusler compounds include
LiAISi, ZrNiSn, and LuAuSn[30, 31].

1.9.2. Full-Heuslers alloys

Full Heusler alloys have a cubic structure and a high degree of chemical flexibility, which
allows for the possibility of tailoring their electronic and magnetic properties. They exhibit a
wide range of magnetic and electronic properties, including ferromagnetic, antiferromagnetic,
and spin-gapless semiconducting behavior [32]. The use of Full Heusler alloys in spintronics

14
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has gained significant attention due to their excellent spin polarization and spin injection
efficiency. These materials have been used in various spintronic devices such as magnetic
tunnel junctions, spin valves, and magnetic sensors. Additionally, Full Heusler alloys are
being investigated for other applications such as thermoelectric devices, catalysis, and solar

energy conversion [33,34].

full-Heusler (FH) half-Heusler (HH)
XY,Z XYZ

Figure.l.8 Representative of the cubic meshes of a Heusler (Full-Heusler) and a half Heusler

(half-Heusler) alloys .

1.9.3.Quaternery alloys- Heuslers

A new series of quaternary Heusler alloys with a stoichiometry of type 1:1:1:1 can be created
by exchanging another X atom for one of the X atoms in the formula X;YZ. These alloys
have the LiMgPbSb type structure [35] with the space group F-43m (No 216) and the
structural formula XX'YZ, where X, X', and Y are transition metals and Z is an sp element. X'
atoms have a lower valence than X atoms, while Y atoms have a valence that is strictly lower
than both (X and X"). The LiMgPdSn structure can indeed be classified into three types [36-
38]1Y-(), Y-(II), and Y-(I11).

15
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Figure.l.9 Crystal structure of quaternaryHeusler alloys.

1.9.4.double half-Heuslers

The half-Heusler semiconductors have been studied extensively as three-component systems.
Here, we explore the phase space of quaternary double (X'X"Y2Z>), compositions that are 10
times larger in size. Using a reliable double half-Heusler composition, the compositions
studied here are divided into three classes (X'X"Y22Z,, XoY'Y"Z2.X'X"Y2Z>)) based on the site

of substitution in the XYZ structure.

2,
1

o o
XZ\/,Y”ZZ

Figure.1.10 Crystal structure of double half-Heusler alloys[39].

1.10. Classification and crystal structure of Heuslers alloys

Heusler alloys are classified into two categories based on their crystal structure and their
disordered atomic structure. The order of the atoms within the crystal lattice is the basis for
this new categorization. Small quantities of disorder within the distribution of atoms at the
lattice sites create notable differences in their electronic structure, and also changes in
magnetic and transportation characteristics [40, 41]. For half-Heuslers, their atoms are

arranged in a perfect arrangement according to the structures Cip, Lo,
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1.10.1 Crystal structure of half-Heusler alloys

Half-Heusler alloys have a general formula and stoichiometry (1:1:1) XYZ, and they
crystallize in the space group (F-43m No. 216) [42] as a non-centrosymmetric Cip cubic
structure. The structure of the Half-Heuslers is defined by the interpenetration of three face-
centered cubics (fcc) sub-lattices, as exemplified by the prototype MgAgAs, where atoms X
and Y create a NaCl-type lattice, and elements Y and Z form a ZnS-type sub-network[43].
However, the majority of Half-Heusler alloys are structured according to the combination
MgCuSb[44], where elements Y and Z form a ZnS-type covalent sub-lattice, while the most
electropositive X elements and the most electronegative Y elements form a NaCl-type lattice.

The face-centered cubic (fcc) structure has three full sublattices and one unoccupied
interpenetrating sub-lattice in the Cyp structure. In the third structure of fcc, the transverse of
the rock-salt structure is moved by half a unit cell[45]. Generally, the Half-Heusler structure
can be thought of as a ZnS sub-lattice (with Wyckoff positions at sites 4a and 4c) with busy
octahedral sites (4b). This description emphasizes the importance of the covalent bonding
interaction between two confined elements in the material's electrical characteristics. On the
other hand, atoms on sites 4a and 4b form a NaCl-like sublattice, indicating that their
interaction has a strong ionic nature[46]. Figure 1.11 depicts the correlation between these

different crystal lattices.

%
% %
LY

Rock-salt structure Structure Zinc-blende (ZnS) Half-Heusler structure

Figure.l.11 Composition of the C1b crystal structure of the Heusler alloy.

Depending on the occupied positions: 4a (0, 0, 0), 4b (1/2, 1/2, 1/2), and 4c (1/4, 1/4,
1/4), several possibilities of association of the three atomic arrangements not equivalent to
this type of structure (C1b) as shown in table (1.1) [47], or, the most observed atomic order

and that of both types I ,11 and III.
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Atoms X Y Z
Type I(o) 4c (1/4,1/4,1/4) 4a (0,0,0) 4b (1/2,1/2,1/2)
Type 11 (B) 4c (1/4,1/4,114) 4b (1/2,1/2,1/2) 4a (0,0,0)
Type I1I (y) 4a (0,0,0) 4c (1/4,1/4,1/4) 4b (1/2,1/2,1/2)

Table.l.1 The different possibilities of occupation of non-equivalent sites in the half-structure
Heusler Cap.

1.10.2. Crystal structure of full-Heusler alloys

Heusler alloys have a general formula of X>YZ and a stoichiometry of 2:1:1, also known as
"full-Heusler". They crystallize in the cubic space group Fm-3m (space group No. 225) with a
prototype Cu2MnAl denoted as L21[48, 49]. In Lo1, X atoms occupy position 8c (1/4, 1/4, 1/4),
Y atoms are at position 4a (0, 0, 0), and Z atoms are located at position 4b (1/2, 1/2, 1/2). Two
sub-cells are occupied by X while the other two are occupied by Y and Z elements. The L2
structure is completely ordered. In some cases, an inverse structure is observed when the
atomic number of Y is greater than that of X (Z(Y) > Z(X)). This inverse structure is often
referred to as XA, and the prototype is CuHg-Ti, which crystallizes in the cubic space group
F-43m (space group No. 216) [50]. In all cases, X is more electropositive than Y, and thus, X
and Z form a rock salt structure to achieve octahedral coordination for X. The remaining X
and Y atoms occupy the symmetrical tetrahedral sites. The structure is described by four
interconnected cubic sub-networks, but X atoms do not form a simple cubic network. Instead,
they are placed at positions 4a (0, 0, 0) and 4d (3/4, 3/4, 3/4), while Y and Z atoms are located
at positions 4b (1/2, 1/2, 1/2) and 4c (1/4, 1/4, 1/4), respectively. Inverse Heusler alloys are
often distinguished from normal Heusler alloys by the formula (XY) X'Z. Mny-based
materials with Z(Y) > Z(Mn) often exhibit this inverse Heusler structure, such as Mn,CoSn or
(Mn Co)Mn Sn[51, 52]. Another family of Heusler alloys is quaternary Heusler compounds,
where four different chemical atoms with two different X and X elements are located at
positions 4a and 4d, respectively. The Y element is placed in position 4b while the Z element
is placed in position 4c. This structure presents the LiMgPdSn prototype and crystallizes in
the cubic space group F-43m (space group No. 216). The reverse Heusler structure and the

quaternary Heusler alloy are illustrated in Figurel.12.
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Figure.l.12 The two structures (regular and inverse) for Heusler alloys based on Mn>
depending on the position of the element Y.
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Figure.l.13 Reverse Heusler structure CuHg2Ti (a), quaternary structure LiMgPdSn(b) [53].

I.11.Structural properties and order-disorder phenomena
The properties of Heusler materials are strongly influenced by their atomic arrangements.

Even a partial mixing of atoms can significantly alter the electronic structure of the material.
Half-Heusler compounds are tetrahedrally coordinated structures that are closely related to
binary semiconductors. They maintain their crystalline order at the composition temperature
[54]. In contrast, X>YZ phases often exhibit substantial atomic disorder, leading to the
occupation of vacant network sites. This disorder is much less common in half-Heusler

compounds..

I.11. 1. Half-Heusler compounds

A mixture of atoms in the Wyckoff 4a and 4b positions results in a CaF,-type structure (C1,
Fm-3m space group, n° 225). However, vacant sites may also become partially occupied,
introducing vacancies in other subnets. For instance, partial occupation of 4d sites
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accompanied by voids on the 4c sites results in a CuoMnAl-type structure (L.1, Fm-3m space
group, n° 225). If there is an additional mixture of atoms in the 4a and 4b positions, it leads to
a type of disorder called CsCl (B2, Pm-3m, #221). On the other hand, if the vacant network
site is partially occupied by atoms from the 4b site and accompanied by the mixing of
positions of 4a and 4c, we obtain a structure of type NaTl (Baa, Fd-3m, n°® 227). Finally, a
totally random distribution of the three atoms over the four possible positions gives rise to a
tungsten disorder (W, Im-3m, n° 229). Table 1.2 provides a summary of the different types of
structures and notations based on the Inorganic Crystal Structure Database (ICSD), Structure
Reports (Strukturberichte), the Pearson database, as well as the space group [44].

Different forms of the atomic disorder are possible in the half-heusler structure Table 1.2.
Figure 1.14 provides an overview of the numerous forms of disorder while providing a

detailed description of all possible atomic configurations.

Structure type
Formula
occupation of  General ICSD SB Pearson Groupe d'espace
Site

4a, 4b, 4c XYZ LiAISi Clp cF16 F-43m (N°. 216)

4a=4b, 4c XZ; CaF; C1 cF12 Fm-3m (N°. 225)
4a, 4b, 4c=4d X2YZ CuzMnAl L2: cF16 Fm-3m (N°. 225)
4a=4b, 4c=4d XZ CsCl B2 cP2 Pm-3m (N°. 221)
4a= 4c, 4b=4d YZ NaTl B32a cF16 Fd-3m (N°. 227)
4a= 4b= 4c=4d X W A2 cl2 Im-3m (N°. 229)

Table.1.2 Occupation of sites, general formula, type of structure (according to different

databases) for different atomic orders and group space of compounds half-Heuslers.
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Figure.l.14 Overview of the most important types of disorder that can occur in the semi-
Heusler structure: (a) CaF.-like disorder, (b) NaTl-like disorder, (¢) Cu2MnAl-like disorder,
(d) CsCl-like disorder , and (e) tungsten-like disorder.

1.11. 2. Full-Heusler compounds

The properties of full-Heusler compounds are strongly dependent on the atomic order. Band

structure calculations show that small amounts of disorder within the distribution of atoms at

lattice sites cause noticeable changes in their electronic structure, and thus also in their

properties. This structural disorder can affect the electrical structure as well as the magnetic

and transport properties [55]. In full-Heuslers, disordered structures including structures L,

Y, A2, DO3, and B2 have been discovered. Table 1.3 summarizes the many potential

structures for full-Heusler alloys based on the Inorganic Crystal Structure Database (ICSD),
the Strukturberichte Data System (SB), and the Pearson Databases [56].
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Structure type
Formula
occupation of  General ICSD SB Pearson Groupe d'espace
Site

X, XY, Z XXYZ LiMgPdSn Y cF16 F-43m (N°. 216)
xX=xX"Y,Z XYZ Cu2MnAl L2; cF16 Fm-3m (N°. 225)
X, X'=Y, Z XX'2Z CuHg2Ti X CcF16 F-43m (N°. 216)
X=X'=Y, Z X3Z BiF3 DOs cF16 Fm-3m (N°. 225)
X=X', Y=Z X2Y2 CsCl B2 cP2 Pm-3m (N°. 221)
X=Y, X'=Z XoX" NaTl B32a cF16 Fd-3m (N°. 227)
X=X'=Y=Z X4 w A2 cl2 Im-3m (N°. 229)

Table.l. 3 The different structures of full-Heuslers compounds [48].

The transition from the most disordered structures to the ordered Heusler structures is shown
in Figure 1.15 [57, 58]. When the arrangement of Y and Z atoms is uniform, positions 4a and
4b become equivalent, resulting in a replaced CsCl structure, also known as a B2-like
disorder. On the other hand, a BiF3 type disorder (space group Fm3m, n°216, DO3) occurs
due to the dispersion of X and Y or X and Z. Other types of disorder, such as the NaTl-style
structure, are rare. In this type of structure, one of the fcc sublattices is covered by X and the
other by Y atoms. Depression B32a is another name for a type of condition (space group Fd-
3m, #227). In the tungsten-like structure with a bcc lattice and decreased symmetry, all
positions become equal, as opposed to these partial disorder phenomena. The various
structures of Heusler compounds are listed in Table 1.3, and the related general formula is

connected to the site occupancy rate.

22



CHAPTER | MAGNETISM AND HEUSLERS ALLOYS

°°°so° o®
D —— :’-8 2 ' —
07 o9 a0 Q° o
[ 91487 oj
97° d??’o?fgb" o~

CuHgoTi (AgLizSb)  LiMgPdSn (LiMgPdSb)

.Figure.l.15 Crystal structures of full-Heusler compounds.corresponding to the various types
of structures[58].

I.12. Magnetism and Heusler alloys

Friedrich Heusler discovered that the compound Cu,MnAl exhibits ferromagnetism despite its
constituent elements not being magnetic. However, it took thirty years to determine that the
crystal structure of the compound was face-centered cubic[59, 60]. Unfortunately, in the
following decades, the compound was largely forgotten, and only a few reports were
published in the 1970s[58, 61].

In Heusler XYZ compounds, the magnetic sublattice is exhibited only by the atoms on the
octahedral sites, as shown in Figure 1.16. Among the Heusler compounds containing Re that
are known in the literature, most of the semiconductor or metalloid systems exhibit
antiferromagnetism and have a low Neel temperature[62]. Only a few ferromagnetic half-

Heusler compounds have been described in the literature, such as NdNiSb and VCoSb[63].

In Heusler X>YZ compounds, the two X atoms occupying the tetrahedral sites are responsible
for the magnetic interaction between X atoms. This interaction leads to the formation of a
second, more delocalized magnetic sub-lattice, as shown in Figure 1.16. Due to their different
magnetic properties, these compounds can exhibit various types of magnetic phenomena, such

as half-metallic ferromagnetism and electric field phenomena.
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Figure.l. 16. (a) XYZ half-Heusler alloys with only one magnetic sub-lattice since only the
atoms in the octahedral locations carry a localized magnetic moment.a magnetic moment. In
(b) Heusler alloys of the X2YZ type, we have two magnetic sub-lattices. There are ma sub-

lattices where we can find a ferromagnetic or antiferromagnetic coupling.

The term "half-metallicity” was first introduced by de Groot et al. [64] in their study of half-
Heusler alloys, specifically NiMnShb. In conventional ferromagnetic materials, both majority
spin (Up: N1(Er)) and minority spin (Down: N (EF)) electrons have a density of states of
N(EF) at the Fermi level. The spin polarization P, which measures the spin asymmetry, can be
calculated using the equation [64]:
- &

Half-metallic materials, on the other hand, exhibit completely different conductive properties
for minority and majority spins. They possess metallic properties for one spin direction (i.e., a
non-zero density of states at the Fermi level) and semiconductor or even insulating properties
for the other spin direction, resulting in a spin polarization rate of 100%. Figure 1.17
illustrates this phenomenon. Half-metallicity has been observed in Heusler cobalt-based alloys
since the 1970s, including Co2MnAl, Co2MnSn, Co2MnSi, Co2MnGe [65], and Co2FeSi [66].
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Figure.1.17 Band structure for (a) conventional ferromagnetic and (b) half-metallic material.

1.12.1. Ferromagnetism in half-metals

Heusler compounds are materials with a specific crystal structure that exhibits remarkable
magnetic properties. One such property is semi-metallic ferromagnetism[13, 28], where the
material behaves like a metal in one spin orientation but behaves like an insulator in the
opposite spin orientation. This property is characterized by the density of states (DOS) of the

material.

De Groot developed a classification system to differentiate between three different forms of

semi-metallic ferromagnetism. Figure 1.18 shows the DOS of various materials:
(a) A metal with a localized density of states at the Fermi level.
(b) A half-metal with minor gap densities of states around the Fermi level.

(c) A representation of a metal that takes into account the spin polarization of two states that

are similar along the two spin directions.

(d) The density of states of a ferromagnetic material in which the majority and minority states

are offset from one another, which is explained by the formation of measurable magnetism.

(e) The case of a ferromagnetic half-metal (HMF), which behaves like an insulator or a metal
for the opposing spin direction. HMF materials exhibit 100% spin polarization, which makes

them promising candidates for use in spintronics and optical devices.
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Figure.l.18 Schematic illustration of the density of states for: (a) metal, (b) half-metal, (c) a
metal (spin-polarized), (d) ferromagnetic compound, (e) half-metallic ferromagnetic

compound, and (f) half-metallic ferromagnetic compound. (1) majority spin, (])minority spin.

1.12.2. The Slater-Pauling rule

After the discovery of Slater-Pauling, the magnetic moment of 3d elements and their binary
alloys can be predicted or estimated through the average number of valence electrons (Zt) per
atom[67, 68]. Slater and Pauling established a curve that presents two zones based on m (Zt),
the average number of valence electrons per atom. The first zone is the domain of weak
valence electron concentrations (Zt < 8) and localized magnetism, with bce structures. The
second zone is the domain of high concentrations of valence electrons (Zt >8) and itinerant
magnetism, with fcc and hcp structures. In the middle of this curve lies iron with Zt = 8,

between localized and itinerant magnetism.

The Slater-Pauling curve for transition metals and some alloys is shown in Figure 1.19. The
region of this curve's localized magnetism, where Heusler alloys are found, is of interest. The

magnetic moment per atom can be estimated using the equation[69] :
m= Zt - 6 (|.3)
where the magnetic moment is simply the average number of valence electrons minus six.

For ferromagnetic half-metals, which have a gap in the minority densities of states at the
Fermi level, the number of occupied minority states must be an integer, which is perfectly

satisfied for the situation m=Zt-6[70, 71].
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The Slater-Pauling rule is presented for half-Heusler XYZ alloys with three atoms per unit

formula as:
Myy; = Zt—18 (|4)

The interaction between the magnetic moment and valence electron concentration in
ferromagnetic alloys can be studied using the Slater-Pauling curve. The spin magnetic
moments of Co2-based Heusler compounds can be determined using the Slater-Pauling rule,
which varies linearly with the number of valence electrons. These compounds can be found in
regions of localized magnetism on the Slater-Pauling graph[71, 72], where the magnetic

moment rises as the number of valence electrons decreases.

In the case of Heusler X>YZ alloys, where there are four atoms per unit formula, the magnetic

moment can be estimated using the equation
Myzyz = Z; — 24 (1.5)

where Zt is the number of valence electrons present in each unit cell containing the four
atoms. For a half-metal compound in both cases (Ci» and L»1), the total magnetic moment

must be an integer, as shown in Figure 1.20.
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Figure.l.19 The Slater-Pauling curve for 3d transition metals and their alloys. Experimental
values are given for some Co2-based Heusler alloys for comparison. (A1—xBx alloys are
abbreviated as AB) [73].
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1.13. Origin of the gap in half-Heusler alloys

This strong hybridization leads to the formation of two separate electronic bands, one for
majority spins and one for minority spins, with the Fermi level located in the gap between
them. The majority-spin band is metallic and contributes to the electrical conductivity of the
material, while the minority-spin band is insulating due to the gap at the Fermi level. As a
result, half-metal materials exhibit 100% spin polarization, meaning that only one spin
orientation is conducting while the other is insulating. This unique property makes them
promising candidates for spintronic and magnetic storage applications, as they can potentially

improve device efficiency and reduce energy consumption.
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Figure.l.21 Density of states of the half HeuslerNiMnSb alloy [74].
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Figure.1.22 Schematic illustration of the origin of the gap in the spin down channel in half-
Heusler alloys [74].

To summarize, the origin of the gap in the density of states of half-metallic compounds like
NiMnSb is due to the strong hybridization between the d states of high and low valence
transition metals, which results in bonding and anti-bonding orbitals separated by a gap at the
Fermi level. In the case of half-Heusler alloys, the gap is typically located between the
maximum of the valence band at point I" and the minimum of the conduction band at point X
in the Brillouin zone. The gap in the spin-down channels is what makes these materials

unique and useful for spintronics applications.

1.14. Applications

1.Spintronics: The half-metallic nature of Heusler alloys makes them excellent candidates
for  spintronics, a field that deals with the manipulation of electron spin in electronic
devices[75, 76].These alloys have the potential to be used as spin injectors and spin detectors

in spintronic devices.

2.Magnetic memory: Due to their high Curie temperature[77] , Heusler alloys are ideal for
magnetic memory applications. The Curie temperature is the temperature above which a
material loses its magnetic properties, and Heusler alloys can maintain their magnetic
properties at high temperatures, making them suitable for use in high-temperature

applications.
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3.Thermoelectric applications:Heusler alloys have shown promising thermoelectric
properties, which means they can convert heat into electricity and vice versa. This makes

them suitable for use in thermoelectric generators and refrigeration devices.

4.Catalysis: Heusler alloys have been shown to exhibit excellent catalytic properties in
various chemical reactions, including hydrogenation and dehydrogenation reactions. This
makes them suitable for use as catalysts in the chemical industry.

5. Solar energy conversion: Heusler alloys have also been explored for use in solar energy
conversion applications. They have shown promising properties for use in photovoltaic.
Overall, the unique properties of Heusler alloys make them promising candidates for various
technological applications, and their development and exploration continue to be an active

area of research.devices and solar thermal energy conversion systems.

1.14.1. Spintronics

Spintronics is a rapidly evolving field that utilizes the spin of electrons to process, store, and
transmit data. This field has revolutionized information and communication technology and
has led to the development of new materials and devices. One of the key materials used in
spintronics is Heusler alloys, which possess magnetic properties that make them ideal for
spintronics applications. CooMnGe, in particular, has attracted attention due to its high Curie
temperature and the magnetic moment [78] , making it a promising candidate for spintronics
applications. The development of new materials and devices based on Heusler alloys is
essential for advancing the field of spintronics and meeting the demands of modern

technology [79].

1.14.2.Tunnel Magnetoresistance (TMR)

Tunneling magnetoresistance (TMR) is a quantum mechanical effect where the resistance of a
tunnel junction made of two ferromagnetic electrodes separated by an insulating barrier
depends on the relative orientation of their magnetic moments. This effect was first observed
by Julliere in 1975 [79]. The magnetic tunnel junction (MTJ), which is composed of two
ferromagnetic electrodes separated by an insulator for a spin valve, is an example of a device
that makes use of TMR. In an MTJ, electrons tunnel through the insulating barrier, and the
resistance of the junction depends on the relative orientation of the magnetic moments of the
electrodes. When the magnetic moments are parallel, the resistance is smaller than when they

are antiparallel.
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Heusler alloys are often used in magnetic tunnel junctions because of their high TMR values
at room temperature. For example, CozFeAl and Co.MnGe/MgO/Coo.75Feo are commonly
used in magnetic tunnel junctions| 80,81] . The TMR values can reach up to 200% at room
temperature and 600% in some cases. In a recent study, an MTJ made with Co2MnSi
electrodes and a MgO barrier resulted in a TMR value of 182%. These high TMR values

make Heusler alloys promising candidates for spintronic applications.
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Figure.l.23 Schematic of the TMR effect in an MTJ. During tunneling, electron spin[82].
1.14.3. Giant Magnetoresistance (GMR)

Heusler alloys have been identified as excellent materials for use as magnetic electrodes in
spin valves due to their high Curie temperatures and 100% spin polarization at the Fermi
level. Spin valves are complex structures designed to increase the sensitivity of
magnetoresistive components, and Co.MnGe-based spin valves have been shown to be
promising devices[83]. The GMR phenomenon is the basis for these devices, and it is a
guantum mechanical effect that is exploited to measure changes in resistance due to changes
in magnetic fields. Overall, Heusler alloys have shown great potential for use in spintronics
applications, which aim to utilize the spin of electrons in addition to their electric charge for

information processing and storage. The GMR working concept is depicted in Figure .1.20.
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Figure.l. 24 Giant magnetoresistance junction (the two states, parallel and antiparallel) [84]
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I1.1. Introduction

Density functional theory (DFT) is a successful theory for calculating the electronic structure
of atoms, molecules, and solids. In principle, DFT can deal with both molecules and large
systems, and it allows for the exact study of the properties of an electronic system using only
the density of the system. Moreover, the calculation of the density does not require knowledge
of the many-body wave function, which greatly simplifies its calculation. DFT has its origins
in the model developed by Llewellyn Thomas and Enrico Fermi in the late 1920s [1] and 30s
[2]. Nevertheless, it was not until the mid-1960s and the contributions of Pierre Hohenberg,
Walter Kohn, and Li Sham that the theoretical formalism on which the current method is
based was established [3]. The density n(r) can be calculated even for massive systems. The
density depends only on three spatial variables and shows no sign of mass or radiation.

This chapter will briefly cover the fundamentals of DFT. The various degrees of
approximation that were employed in its implementation will then be thoroughly discussed.
Finally, we will provide a brief overview of the computing tools used in this study, such as
Wien2K.

I1.2.Schrodinger equation of a crystal

Schrddinger's equation is the fundamental equation of quantum physics. It describes the
motion of electrons and nuclei much like Newton's laws in classical physics. A complete
description of a quantum system with N electrons requires the calculation of the
corresponding wave function. This can be obtained from the time-independent Schroder

equation[4]. The Schrodinger equation can be written as follows.
Hy=E{ (11.1)
Where:
H: is the Hamiltonian operator of the studied system,
y: is the eigenfunction of the system,

E: represents the total energy associated with this same system.
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Schrodinger's equation is the fundamental equation of quantum physics. It describes the
motion of electrons and nuclei much like Newton's laws in classical physics. A complete
description of a quantum system with N electrons requires the calculation of the
corresponding wave function. This can be obtained from the time-independent Schroder
equation[4]. The Schrodinger equation can be written as follows:

-~ -~

A Voo + Voin + Vo (11.2)

=)

H=T, +

The operators that form the Hamiltonian can be written:

‘7 _ 1 z ZIZ]eZ
non 2 I#] 47T£0|ﬁl - ﬁ]l

‘7 _ Z Zlez
o i) 41, | — )|

Where h = h/2m and h the Planck constant, m The mass of an electron is m, the mass of the
nucleus is M, and the charge is Z. The Hamiltonian operator can be decomposed into two
contributions, one kinetic and the other potential. The kinetic part is composed of terms T, e
for electrons and T,, nuclei. The contribution to the potential energy is attractive between
electrons and nuclei (V,_,), and repulsive between electrons-electrons (V._.) and nuclei-

nuclei(V,_,).
In the same way, if we replace the Hamiltonian in equation (11.1), we will have:

[To+ Tn+ Voot Von +Ve | = Ep (11.3)
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The objective of the majority of quantum chemical methods is to approximate and
approximate the analytical solution of the non-relativistic Schrodinger equation independent
of time. To devices, this job is completed in steps: The first approximation is the Born-
Oppenheimer approximation, which is the point of departure from all other approaches.

I1.3. Born-Oppenheimer approximation

The approximations used in quantum mechanics consider the electrons and nuclei of a given
system as distinct objects, i.e., atoms and molecules, rather than their respective masses. The
first historically significant approximations were made by Max Born (1882-1970) and Robert
Oppenheimer (1904-1967) [5], who made contributions to the theory of relativity and the
Manhattan Project, respectively. The Born-Oppenheimer approximation [6] is based on the
fact that there is a significant mass difference between electrons and nuclei [7]. The
movement of nuclei is considered negligible compared to that of electrons, so their kinetic
energies are zero, and the potential energies of interaction between the nuclei become

constant [8].
H,=T,+V, +V,_, (11.4)

With:
H.: Electronic Hamiltonian.
T, : The operator of the kinetic energy of the electrons.
V. :The repulsive energy operator between electrons.
V._, :The operator of the nucleus-electron attraction energy.
Including the Schrodinger equation for electronics is:

Hopo(r,R) = [Te + V. + Vo] (r, R) (11.5)

Schrédinger's equation can only be solved if all terms of the Hamiltonian involving nuclei are
eliminated. This is why it is very often coupled with the Hartree approximation, which

reduces the number of variables needed to describe the function.
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I1.4.Hartee approximation

A method for calculating wave functions and the approximative energy of ions and atoms was
first developed by Douglas Hartree in 1927 [9]. The fundamental tenet of this approximation
is to think of the electrons as fast movements of one another. Such a system's Hamiltonian is

as follows [10]:
H=3\,H, (11.6)
Where:H; is the single-electron Hamiltonian
H=3V H =% 2V2+ Vo (T R) + Ve o(#) (11.7)

The product of Hartree [10]presents the electronic wave function that allows solving this
Hamiltonian which consists of a single-electron product [11].

YT, T2, T3, 1) =P F) P .. . P(F) (11.8)

This approximation is based on the assumption of free electrons, which does not take into
account the interactions between electrons and spin states. A significant advantage of this
approach is that it proposes a self-consistent solution to the problem of the electronic system.
However, it also has important limitations: The total Coulomb repulsion Ve-e of the
electronic system is overestimated, and it is simple to solve but does not yield very accurate

results. Additionally, the Pauli exclusion principle is not taken into account.

I.5.Hartree-Fock approximation

The Hartree-Fock theory is one of the simplest approximations for solving the many-body
Hamiltonian [12]. It is an extension of the Hartree approximation that includes the
permutation symmetry of the wave function, which leads to the exchange interaction. The
Pauli exclusion principle states that the total wave function for a system must be
antisymmetric under particle exchange. The wave function is given by a single Slater

determinant [13] of N spin-orbitals:

Y F)PE) . Py ()
(?1'?2' ?n) = \/; II) (172) II)(?Z) e II)N(?Z) (“9)
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P;(7;): is the mono-electron wave function, also known as the spin-orbital, that is dependent

on the spatial coordinates and the spin of the electrons.ii Is used to normalize data. The

Vni

results from this approach are promising, particularly in molecular physics. Therefore, it is
limited to systems containing a few electrons, such as tiny molecules. It is difficult to apply to
the handling of extended systems like solids and ignores the impact of electronic correlations.

For larger molecules or solids, methods using Density Functional Theory (DFT) are much

more effective. adapted.

1.6.Density Functional Theory
The DFT theory allows us to reformulate the many-body problem into a one-body problem in

an effective field, taking into account all the interactions using electron density as a basis
function. This theory is the result of two theorems developed by Hohenberg and Kohn [13] in
1964, which demonstrated the possibility of determining the properties of a system using
electron density, and Kohn and Sham [3] in 1965, which turned DFT into a practical tool in

quantum chemistry.

1.6.1.Hohenberg's and Kohn's theorems

The approach developed by Walter Kohn and Pierre Hohenberg was to reformulate the
density functional theory proposed by Thomas and Fermi into an exact theory of a many-body
system. The formulation, which applies to any system of interacting particles evolving in an
external potential, is based on two fundamental theorems stated and demonstrated by
Hohenberg and Kohn in their 1964 paper [14].

Theorem 1:

For a given exterior potential Vex(r), the total ground state energy E is a unique function of
the particle density p(#). This is used to establish a correspondence between the charge
density of a system of N interacting particles in the ground state and the external potential of
its nuclei, Uext(r). The total energy of the ground-state system is also unique in functional

terms; that is,
E=E[p({)] (11.10)

With:
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E@@ﬂ=F@ﬁn+fpﬁamﬂ@m7 (L. 11)

Where:

F[p(¥)]: is a density functional.

[ p(¥) U, (¥)d¥:represents the nucleus-electron interaction.
p(¥)independent of external potential U,,,

Flp®)] = T[p()] + Uee[p()] = Te[p()] + Enariree[P()] + Exc[p(@]  (11.12)

WhereT,[p(r)] is the kinetic energy of the electronic system and U..[p(¥)] is the electron-
electron interaction term that includes the Hartree energy Egareree [ P(F)](the Coulomb
electron-electron repulsion) and the exchange and correlation energy. E x[p(¥)] Expressions
for kinetic energyT.[p(¥)] and energy of exchange and correlation Ex.[p(7)]are not known
exactly.

Theorem 2:

The total energy functional of any multiparticle system has a minimum that corresponds to the

ground state. Ground state particle density check:

E[po] = minE|p] (11.13)
OF[p(7)] .
[ eI ],y ’ .

The function F[p(7)] is universal for any multi-particle system. If the function F[p(¥)] is
known, then it will be relatively easy to use the variational principle to determine the total
energy and electron density of the ground state for a given external potential. However, the

Hohenberg and Kohn theorem does not indicate the form of F[p(7)].

1.6.2.Kohn-Sham equations

The equations developed by Kohn and Sham in 1965 represent a significant step towards
making DFT applicable[3]. They showed that it is possible to replace the real, interacting
system with a fictitious, non-interacting system of N electrons moving in an effective
potential Vess (r). Consequently, Hohenberg and Kohn's theorems apply to the non-interacting

system in the same way as they do to the real system. To write the function in the form of a
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set of coupled equations that can be solved, the notion of an effective potential is introduced,
such that

Verrlp(] = Vere + [ Z20dF + Viclp()] (11.15)
With
Va={ % d7 :is the Hartree potential.

Vxc[p(r)]: is the exchange and correlation potential given by:

0 r
Vxelp()] = Z2c2™] (11.16)

In equation (I11.17) , Exc is The exchange-correlation energy that brings together everything
unknown in the system, namely the effects of correlations due to the quantum nature of
electrons. The second uses the effective potential in the N mono-Schrédinger equations to

obtain:
1
[—EVZ + Veff(r)] @i(r) = £,¢9;(1) (11.17)
With:
Veff(r) =Vext + Vg + Vi (11.18)
The third indicates how to access the density from the N single-electron functions [15]:

p(r) =YL l@()|? (11.19)

Let's summarize the interrelated Kohn Sham equations:
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The first equation for Kohn-Sham

Veff(r) = Vext + VH + ch

p(r) Verrlp(r)]

third equation for Kohn-Sham

N
P =) lo@)P? 2V 4 Vg ()] @) = £i0 )

@)

second equation for Kohn-Sham

The exchange-correlation energy, Exc, represents the contribution to the total energy of a
system that arises from the exchange and correlation interactions between the electrons.
Unfortunately, the exact form of Ex is unknown, and this is where approximations are
required. There are many proposed approximations for Exc, ranging from simple local density
approximations to more sophisticated functionals that take into account the non-local nature
of exchange and correlation effects. These approximations are often based on physical

insights, empirical fitting to experimental data, or even machine learning techniques.

1.6.2.1.Solving Kohn-Sham equations

The self-consistent field (SCF) method is used to solve the Kohn-Sham equations and obtain
the ground state electron density of a system. The process involves starting with an initial
guess of the electron density, calculating the effective potential based on this density, and
solving the Kohn-Sham equations to obtain a new set of orbitals and eigenvalues. The
electron density is then updated based on the new orbitals, and the process is repeated until
convergence is achieved. The SCF procedure can be repeated for different numbers of

electrons to study the behavior of the system under different conditions.

45



CHAPTER II OVERVIEW OF CALCLUATION METHODS

Start

initial densitypo (1)

>

effectivepotentialcalculation

Veff (1) = Vere ) + Vy[p(r)] + Vi [p(r)]

Solve KS equation

Verr (1) = Vexe(r) + Vy[p ()] + Vi [p(r)]

Construction of the new electron density

N
pr) =)  lo)l?

i—( Convergence H Yas )
‘ End ’

Figure.ll.1 Self-consistent iteration process used to solve Kohn Sham equations.

1.6.3. Functionality of the exchange and correlation

The generalized gradient approximation (GGA) and the local density approximation (LDA)
are two commonly used approximations to estimate the exchange-correlation energy in DFT
calculations. The LDA assumes that the exchange-correlation energy density is a function of

the local electron density only. On the other hand, the GGA includes not only the local
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electron density but also its gradient in the estimation of the exchange-correlation energy

density.

These approximations are still not exact, and errors can arise in the calculated properties of
the system. Therefore, there is ongoing research to develop more accurate approximations for
the exchange-correlation energy. The development of new functionals is an active area of

research in computational chemistry and physics.

1.6.3.1. Local Density Approximation (LDA)
EXR4pM] = [ pMerd? [p()]d’r (11.20)

where Exc is the exchange-correlation energy per electron in a uniform gas of electron
density p(1). This means that the exchange-correlation energy for a non-uniform electron
density can be determined by integrating the uniform electron density over space, weighted by

the local density at each point.

The LDA is a local approximation, meaning that the exchange-correlation energy is only
dependent on the density at each point in space and not on the gradient or curvature of the
density[16]. While the LDA has been successful in predicting many properties of atoms and
molecules, it can still be inaccurate in some cases, particularly for systems with strongly

correlated electrons or in systems with significant non-local effects.

whereekP4 is the exchange-correlation energy per particle in a homogeneous electron system

(i.e. a uniform gas of interacting electrons) of density p(r).

The exchange and correlation functions can be divided into an exchange-related term and a

correlation-related term
ex24[p(M)] = exPA[p(r)] + etP4[p(r)] (11.21)

According to the Dirac exchange functional [17], we write the term relating to the exchange:

A lp(ry] = - 2 (20) (11:22)

T

Many works on the parametrization of €24 have been published, including those by Vosko,
Wilk, and Nusair, [18], Perdew and Zungar, and [19]. The local density approximation (LDA)

produces good results for systems where the density varies slowly. It is less good for more
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inhomogeneous density systems. For this reason, many developments have been made to

improve the results obtained.

1.6.3.2.Generalized Gradient Approximation (GGA)
The exchange and correlation energy in GGA is written as a functional of the electron density

and its gradient, expressed as €$¢4[p(r)|Vp(r)|]. This approach takes into account the non-
locality of the density, which makes it more accurate than the LDA. The GGA is more
complex and computationally demanding than the LDA, but it has been shown to provide
more accurate results for many systems. There are several types of GGA functionals, such as
the Perdew-Burke-Ernzerhof (PBE) functional, which is one of the most widely used GGA

functionals.
E(EAp(M)] = [ p() e£E4p(r)IVp(r)|]d3r (11.23)

Where €464 represents the exchange-correlation energy per electron in an electron system

inhomogeneous density in mutual interaction.

In the case where a spin polarization is taken into account, the energy of exchange and the

correlation is described as follows:

ESEApi(r), po ()] = [ p(MESEA [prp VNV, (r)]d3r (11.24)

There are several forms of energy and the exchange and correlation potential, the most used is
that of Perdew-Burke-Ernzerhof in 1996 [20] andWC-GGA introduced by Wu and Cohen
[21].

1.6.3.3.The LDA and GGA approximations with spin polarization
In magnetic systems, the electron densities depend on the spin polarization, p;which is
different from p, the exchange and correlation energies given by the following expression

depending on whether gradient corrections are introduced or not [22, 23].
The local spin density approximation (LSDA)

EXPpy (), pu(N] = [[p1(1), pr ()] 2274 [py, p1d3r (11.25)
and the generalized gradient approximation (GGA) [14]:

ESEApr (), pu (0] = [ p(r)egt? [p1p Vo (1) Vp ()] d3r (11.26)

prandp, respectively symbolize the electronic densities of majority and minority spin.
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1.6.3.4. The DFT + U approximation (L(S)DA+U and GGA+U)

The structures of strongly correlated systems [24] contain transition metals or rare earth ions.
The L(S)DA and GGA approaches are incapable of accurately describing correlated systems.
So to improve the results, an attempt was made by Dudarev et al. [25]called DFT +U
(LSDA+U, GGA+U). The fundamental principle of this approximation is to add the
additional term U to the LSDA or GGA potential for each d and f orbit in order to obtain the

correct gap and magnetic properties for magnetic materials.
DFT+U introduces an energy correction to the standard functional DFT given by:
EDFT+U — EDFT 4 p_ . _ E,_ (11.27)
With:
EPFT: represents the energy contribution of the standard DFT (LSDA or GGA),
E yup 1S a correction of the electron-electron interaction energy.

E ;.is a double-counted term that corrects for contributions to the total energy included in both

EHub and EdC'

Evaluating energy with (11.27) requires expressions for Eg,pand E4..[26]used the Mott-
Hubbard Hamiltonian to calculate the energy of the DFT+U function in electron spin
polarization. After subtracting the terms counted twice from the energy given by the classical

DFT method, the energy of this functional is obtained.
EPFT+U = EDFT 4 37 (UZ‘D (s — N2 0) (11.28)

Where n,, , is the operator that gives the number of electrons occupying an orbital of the

magnetic quantum number m and spin ¢ at a particular site. U is the spherically averaged
Hubbard parameter, which describes the energy cost of placing an extra electron at a

particular site. The screened exchange energy is represented by.
U = E(F"*Y) + E(F* 1) — 2E(F™) (11.29)

U depends on the spatial extension of the wave functions and screening. The effective
Coulomb exchange interaction, Uess = U — J, was used here for the calculation, where U is the

Coulomb-energetic cost of placing two electrons at the same site, and J is an approximation of
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the Stoner exchange parameter. The key to performing an accurate DFT+U calculation lies in
selecting a suitable value for Uer.

1.6.3.5. The modified Becke-Johnson potential (mB]J)

The exchange potential, which was initially put out by Becke and Johnson [27], has been
updated by Tran and Blaha. The MBJ "modified Becke Johnson Potential” is what is being
described (also known as the TB potential, Tran-Blaha)[28]. It has been incorporated into the
most recent Wien2k code version. The LDA and GGA potentials reproduce the band structure
of metallic systems relatively well, but they fail to procreate the gap energy in
semiconductors. Tran and Blaha introduced a simple modification of the Becke and Johnson
potential and obtained good agreement with other more expensive approaches. The modified
mBJ potential has the following form [29]:

Vi = VPP @) + 3c-2)= f /Zpt"((: (11.30)

V"’B] is the semi-local Becke-Roussel potential (BR) [30], which was proposed to model the

Coulomb potential created by the exchange holes, it is defined as follows:

Vg (F) =

-5 = (1- e = 2x, (e D) (11.31)

The function x, () can be calculated from the following nonlinear equation:

The function x, () can be calculated from the following nonlinear equation:

ro@e 5 _ 122/ o) (11.32)
S o ) |
t,(7¥) isthe kinetic energy density, given by:
t,(7) = —Z 1V¥is Vi (11.33)
As well as the term b, (7) was calculated using the following relationship:
1
b, (7) = (%) ; (11.34)

50



CHAPTER II OVERVIEW OF CALCLUATION METHODS

In equation (11.34) it is a parameter that depends linearly on the ratiovp’:"(?, it is written in the
form:
1 Vps(®) 4= 2
c=a+B<5fﬁdr> (11.35)

a and [ are adjustable parameters and € is the unit cell volume.

1.7. Calaluation Methods

These methods you mentioned are all different computational approaches to solve the Kohn-
Sham equations in DFT calculations. LCAO [31, 32] (linear combination of atomic orbitals)
is a basis set approach that approximates the wavefunction as a linear combination of atomic
orbitals. It is often used to describe the electronic structure of molecules and solids containing

transition metals.

On the other hand, OPW (orthogonalized plane waves) [32, 33] is a basis set approach that
uses a set of orthogonalized plane waves as a basis set to expand the wavefunction. It is well-

suited for simple metals where the conduction bands are mainly composed of s and p orbitals.

KKR (Korringa-Kohn-Rostoker) [34, 35] is a method that uses Green's functions to solve the
Kohn-Sham equations. It is well-suited for calculating the electronic structure of complex

materials, such as alloys and surfaces.

APW (augmented plane wave) [36] is another basis set approach that expands the
wavefunction in a set of plane waves and local orbitals. It is often used to describe the

electronic structure of semiconductors and insulators.

LAPW (linearized augmented plane wave) and LMTO (linearized muffin-tin orbitals) [37] are
two linearized techniques developed by Andersen. They provide significant computational

time savings and are widely used to study the electronic structure of materials.

1.7.1.The augmented plane wave (APW) method

The Muffin-Tin approximation was introduced by Slater in 1937 when he created the novel
APW (Augmented Plane Wave) approach [36], in which he offered a radial step to represent
the crystal potential. This approximation predicts that the unit cell will be split into two

categories of regions:
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1)"Muffin-tin" spheres with a radius of ro that are centered on each atom and do not overlap
(Regionl).

2)An area of interstitial tissue separating the remaining space from the spheres see Figure.
11.2. (Region II).

which uses the following two appropriate base categories:

®,

% In the "muffin-tin" atomic spheric region (region I), there are radial functions

multiplied by spherical harmonics

0,

% In (region II), there are plane waves for the interstitial region.
The functions of waves, which are denoted by the following notation, define the two spherical

and interstellar regions:

2im AU ()Y (1) r <7
} (11.36)

(r) = {%ZG Coeik+OT r>7

Represent the radius of the muffin-tin sphere.

- is the volume of the elementary cell.

G: is the reciprocal lattice vector.

C;and A, ,,are the coefficients of development in spherical harmonicsY; ,,,.

U;: The regular solution of the following equation [38]:

2
(- +9D 4 ve) - EJru) =0 (11.37)

WhereE;: energy parameter.

V(r): The spherical component of the potential in the sphere.
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Muffin-Tin Region Interstitialregion 1

4 )

g 4

Figure.l1.2 Representation of Muffin-Tin “MT” potential. Diagram of the distribution of the

unit cell in the atomic sphere and in the interstitial region.

The radial functions defined by (11.38) are orthogonal to any proper state of the core. This

orthogonality disappears at the limit of the sphere as shown by the Schrédinger equation
next :

_ dzrul _ dZTUZ
(Ey — Ex)rU Uz = U, w2 U173

(11.38)

With U, and U, are the radial solutions at different energies E,and E, respectively.

Slater introduces the muffin-tin (MT) approximation to justify the particular choice of these
functions [39]. Presenting plane waves as solutions of Schrédinger's equation is a constant

potential.

The representations defined in the expressions (11.36) and (11.37) are continued on the limits
of the spheres MT, which is necessary. Of this fact, the coefficients must be defined according
to the coefficient of the plane waves existing in the interstitial regions where the latter is

expressed as follows:

4mil .
A = T 26 CeJ L (IK + gIR)Y 1, (K + G) (11.39)
With

J: the Bessel function and the origin is taken at the center of the sphere.
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R: is the radius of the sphere MT.

In this method (APW), the plane waves and the energy parameters are called the variational
coefficients, where coefficients are determined from these two coefficients, and on the other
side, the individual functions indicated by G also become compatible with the radial functions
in the spheres, where one can then obtain augmented plane waves (APW). The major problem

caused by this method is the discontinuity of the function (pg(ﬁ E)on the surface of the

sphere MT. To ensure continuity in this limit, the coefficients A,;,,must be expanded as a
function of the coefficients C;. In this expansion, if the radial partuf (r, E)vanishes for a
value of E, there will be no continuity. To address this, several modifications to the method
[37, 39, 40]have been proposed: the linearized augmented plane wave method (LAPW:
linearized APW), the LAPW+ method (LAPW+lo), and the full potential LAPW method (FP-
LAPW: full potential LAPW). We will see these methods later.

1.7.2.Full Potential Linearized Augmented Plane Wave Method (FP-LAPW)
Anderson first developed the linearized augmented plane wave (LAPW) method in 1975[40-
42]. is a development of Slater's APW method and offers one of the most efficient
foundations for calculations using crystalline solids. The basis functions inside the Muffin-Tin
sphere in the Linearized Augmented Plane Wave (LAPW) method are a combination of linear
functions of the radial functions U,(r)and Y,,,(r)and their derivatives with respect to the
energy U;(r)and Y;,,,(r)[43], and the functions U;(r)and Y;,,(r)must meet the following
requirements:

2 .
(- L+ D4 v() - EJr0,(r,E) = 1U,(r,E) (11.40)

dr? r

In a non-relativistic situation, the radial functions and their derivatives ensure continuity with
the plane waves coming from outside on the surface of the MT sphere. As a result, the wave
functions improve the FP-LAPW method's fundamental functions (LAPW):

ilZG Cg el GHor r>R,
Y(r) =4 92 _ (11.41)
Zlm(AlmUl(T) + BlmUl)Ylm r <R,

The coefficients By, are equivalent to the function E; and share the same kind of A,. In

general, if U, is equal to zero at the surface of the sphere, its derivative U,will not be zero. As
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a result, the problem of continuity at the surface of the MT sphere that was previously
reported in the APW method will not be solved by this method.

.7.2.1.Multiple energy windows

e The FP-LAPW problem[37] involves doing two independent LAPW computations with
the same potential as illustrated in Figure 11.3.

e The method that divides the energy range into windows, each of which corresponds to
energyE,, is the one that is most often used to deal with the semi-core problem. In this
treatment using windows, the states of valence and semi-Core are differentiated, and a set
E;is selected for each window to process the appropriate forms.

e The FP-LAPW approach to quantum physics is based on the theory of semi-core states,
which are states where there areU;andU,functions parallel to any suitable condition of the
heart and, in particular, to those located on the surface of the sphere. But they often do not
satisfy this condition unless there are "ghost" bands between them and the valence state.

I o

Semi-cosur

Figure.11.3 Multiple energy windows

Local orbitals are formed by modifying the orbitals of its base to avoid the use of several
windows by using the third category of basic functions. The principle is to process all the
bands from a single energy window (proposed by Singh in 1991) [44]. These orbitals denoted
"LO," are the result of a linear combination of two radial functions corresponding to two

different energies and the derivative with respect to the energy of one of these functions:

0 r>R, 1142
? = [Aun (T, ED + BunU1(r ED + Com(r Evo) ¥t 7 < Re (I1.42)

55



CHAPTER II OVERVIEW OF CALCLUATION METHODS

Where: Cy,are its coefficients having the same nature of coefficients A;,and B, .

1.8.TheWIEN2k Code

Step 1: Structural Optimization - The WIENZ2k code first performs a structural optimization
of the crystal unit cell [45,46]. The user specifies the crystal structure in terms of lattice
vectors and atomic positions, and the code uses various optimization techniques to minimize

the total energy of the system.

Step 2: Electronic Band Structure Calculation - After the optimized structure is obtained, the
code performs an electronic band structure calculation using the FP-LAPW method. The code
solves the Kohn-Sham equations self-consistently to obtain the electronic density and energy
of the system.

Step 3: Properties Calculation - Finally, the code calculates various physical properties of the
system, such as the density of states, magnetic moments, and charge density. These properties

are calculated using the electronic density and energy obtained in step 2.

The WIENZ2k code provides a user-friendly interface for carrying out these calculations, and it

is widely used in the materials science community.

1.8.1.Code initialization

Additionally, there are other auxiliary programs that can be used for specific purposes, such
as generating starting magnetic configurations (MSTART), calculating the charge density of a
supercell (SUPERC), and creating an initial potential file (VPOTENTIAL), among others.
Once the geometry and starting densities have been defined, the main calculation is performed
in three steps:

1. SCF (Self-Consistent Field) cycle: The SCF cycle starts by assuming an initial
potential, which is used to calculate the electron density using the Kohn-Sham
equations. This electron density is then used to recalculate the potential, which is then
used to obtain a new electron density. This process is iterated until self-consistency is
achieved, i.e., the potential and the electron density no longer change significantly
from one iteration to the next.

2. Band structure calculation: Once the self-consistent electron density has been

obtained, the program calculates the eigenvalues and eigenvectors of the Kohn-Sham
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Hamiltonian in the irreducible part of the Brillouin zone. This information is used to
calculate the band structure and the density of states.

3. Total energy calculation: The total energy of the system is obtained by integrating the
electron density and the potential over all space, and adding the kinetic energy and the
Hartree energy. The exchange-correlation energy is calculated using one of the
approximations discussed earlier.

The output files of the calculation contain information such as the band structure, density of
states, electron density, and total energy, among others. These can be further analyzed using

other programs or visualization tool

1.8.2.Self-consistent calculation
In this step, a self-consistent cycle is initialized and repeated until the convergence criterion is

satisfied. This cycle involves the following stages [47]:

e LAPWO: Calculate the potential as the sum of the Coulomb potential VC and the
exchange potential and Vxc correlation from density.

e LAPWI: Find valence bands, eigenvalues and eigenvectors.

e LAPW?2: Calculates the valence densities for the eigenvectors as well as the energy of
Closed.

e LCORE: Computes core states and densities.

e MIXER: Mixes the electron densities of the core, semi-core states, and valence states
to generate the input density for the next iteration. By, therefore, the input and output

density will be mixed and the convergence criterion will be checked.

I-E
W
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1.8.3.Determination of properties

Once the self-consistent calculation of the "SCF cycle" is completed, several properties can
be determined, among which are the structural properties, magnetic properties, the structure of

bands, density of states, charge density, and elastic properties, etc. The use of the different
Wien2k programs is presented in a flowchart in Figure 11.4.

NN
check for LSTART
overlap. Atomic caleulation
. I Hy g = Eyy
| SGROUP | | SYMMETRY } Atomic “’;’;5""*'6‘-5' DSTART
input files superposition o
struct files struct files aiﬁmi{feﬂsii‘fe.{
input files
I KGEN | P |
k—mesh
generation
“
LAPWO
Ve = —8m Poisson
Ve (P) 1 g
ORB
¥ = I
LDA+U, OP potentials <~ ot e
l
|8 T
MT
LAPWI1 LCORE
P w2 . VJ I H Atomic calculation
' Hy g = £ 0w,
v
Ey Wi
LAPWSO Pyal Ecore
‘—\P \l’_, add spin—orbit
LAPW?2 :
1
Pual = Zwﬁm ommmmmmmmmes
Ep<Ep \1{7
Pval J N Poid
)
v MIXER
LAPWDM | _ _ _ o _______ >
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Figure.ll.4 Diagram of the Wien2K code.
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CHAPTER |11 RESULTS AND DISCUSSIONS

I1.1. Introduction

Half-Heusler materials are a class of intermetallic compounds with unique properties. They
have a cubic leaf phase crystal structure and a chemical formula of XYZ, where X and Y are
transition metals and Z is typically an element from group 11l or V. They have an electronic
structure that can be semiconducting, metallic, or demi-metallic. They are named after Fritz

Heusler, who discovered them in 1903[1].

Half-Heusler materials are fascinating compounds with a wide range of electronic, magnetic,
and thermoelectric properties, making them ideal candidates for applications in fields such as
spintronics, energy harvesting, and magnetic storage devices. They have a high Seebeck
coefficient and high electrical conductivity, making them ideal candidates for applications in
fields such as spintronics, energy harvesting, and magnetic storage devices. Research into
these materials may uncover further potential applications and lead to the development of new
and exciting technologies. In this chapter, we will explore the properties of Half Heusler

materials.

The objective of this present work is to provide the maximum of information and to carry out
at the same time a complementary and comparative study. This work is subdivided into two

parts:

-a new double-half Heusler KoNaRbAs;.

- half-Heusler VMSb (M = Pd, Pt).

these materials do not have many theoretical studies dealing with their physical properties.
Based on the FP-LAPW method implemented in the Wien2k code [2] , we have adopted as
exchange and correlation functionals the generalized gradient approximation (GGA:
Generalized Gradient Approximation) in the framework of (PBE: Perdew-BurKe -Ernzerhof)
and (WC: Wu-Cohen), and the local spin density approximation with interaction parameter U
(LSDA+U) [3, 4]. Thus we used the modified Beck-Johnson exchange potential (mBJ:
Modified Beck-Johnson) [5] to calculate the structural, elastic, electronic, magnetic, and
thermoelectric properties of the considered KoNaRbAs, double half Heusler ( DHH) alloy are
presented, and compared with those of its parent half Heusler (HH) alloys, KNaAs and
KRbAs. and investigate the structural, electronic, elastic, and magnetic properties of two half-
Heusler VMSb compounds (M = Pd, Pt).
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III.2.Computational method:

In the FP-LAPW method, the space is divided into non-overlapping Muffin-Tin spheres and
interstitial regions. Basis functions, electron densities, and potentials are expanded into
spherical harmonics with cutoff radius Imax =10 around atomic and Fourier series sites. The
product of the smallest radius Rmt of the spheres MT and Kmax determines the maximum of
the wave vector(Rmt x Kmax) Which sets the number of plane waves., the energy cut-off value
of Rut*Kmax = 8 is used, and at12, the Gaussian value Gmax is performed. The choice of the
values of the radii of the spheres Muffin-Tin Ryr is made in such a way that the interstitial
region is the smallest possible, in order to ensure the speed of convergence. The number of k-
points in the first Brillouin zone ( BZ) is carried out for 1000 k points. and using a 15x15x15
Self-consistent calculations are considered convergent when the total energy of the crystal
converges to be10*e, and 10° Ry. The Muffin-Tin rays and the valence states adopted in our

work are grouped in Table I11.1

Table.l11.1 The valence states and RMT radii of the atoms in the investigated materials.

Electronic configuration Rwmr(a.u)
K 1s%2s22p53s23p%4st 2.35
Na 1s% 252 2pb 3st 2.35
Rb 15%2s%2p53s23p%452301%4pb5s? 2.35
As 3010 4s? 4p3 2.23
Vv 3d34s2 2.00
Pd 1s% 252 2p® 3s? 3p® 3d™° 4s? 4p° 40 55° 2.10
Pt 1s% 252 2p® 3s? 3p® 3d™° 4s? 4p® 440 552 5pb 4114 5d° 6t 2.10
Sb 1s2 2s% 2p® 3s? 3p°® 3d'° 4s? 4p° 440 552 5p3 2.30
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II1.3. Results and discussion:
I11.3.1. double-half Heusler K:NaRbAs:
I11.3.1.1 Structural Properties

I11.3.1.1.1The Crystal Structure of Heusler Alloys and Preferred Sites:

Among the materials that have garnered a lot of attention lately is the double-half Heusler
alloy. This compound is a combination of three different elements and possesses a cubic
crystal structure. What makes this material so fascinating is its unique structural properties,
which have the potential to revolutionize many areas of technology. We'll explore the

structural properties of the double-half Heusler alloy.

The studied compound K:NaRbAs,crystallizes in a tetragonal structure with P-4m2 space

group (N°115), see Figurelll.1.

Figure.l11.1 Structure representation of K2ZNaRbAs2 compound.

Heusler alloys are magnetic intermetallics with a face-centered cubic crystal structure and a
composition of XYZ with stoichiometry 1:1:1 (half-Heusler). we have three non-equivalent

atomic arrangements that are possible.
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Table.l11.2 The different possibilities of occupation of non-equivalent sites in the Hlef-
Heusler Cyp structure, for the studied compounds KNaAs, KRbAs.

Type K Na .Rb As
Type | (1/2,1/2,1/2) (0,0,0) (1/4,1/4,1/4)
Type Il (1/2,1/2,1/2) (1/4,1/4,1/4) (0,0,0)

Type I (1/4,1/4,1/4) (1/2,1/2,1/2) (0,0,0)

I11.3.1.1.2 Structural optimizations and magnetic order
In order to check the stable magnetic phase, the optimization of both parent HH alloys was

carried out within GGA in their ferromagnetic, non-magnetic, and anti-ferromagnetic phases
[6]and represented in Figure.l11.2
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Figure.ll11.2 Calculated total energy of KRbAs and KNaAs compounds as a function of the
volume for FM, NM, and AFM phases.

As can be seen in Figure.lll.2 the ferromagnetic phase of type | structure (FM-1) has the
lowest total energy for both compounds, which suggests that it is energetically most stable
compared to the other (NM) and (AFM) phases at the equilibrium volume.

From the obtained magnetic and structural ground states of KNaAs and KRbAs (FM-I), the
K2NaRbAs: structure is constructed by substituting, in the conventional lattice of KNaAs, two

Na atoms with Rb atoms. Consequently, only the FM phase of this acquired DHH structure is
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optimized, as shown in Figure.lll1.3 the optimized volume of K:NaRbAs; is 1649.7486
(bohr3).

Then the structural parameters of the equilibrium are calculated by adjusting the total energy

as a function of the volume, using the Birch Murnaghan equation of state [7].

B, + [(%52/3 - 1]2 [6 —4 (%)2/3]} (11.2)

3

E(V) = Eo + m{[(@)2/3 ~1]

16 14
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Figure.l11.3 Calculated total energy of K;NaRbAs, compound as a function of the volume.

The resulted structural ground state of DHH has a parent HH with a lattice parameter of ayy,

which is equal to cpyy, While apyy = bpyy = aHTzH corresponding to a, b and ¢ values, as

presented in Table I11.3.

The obtained parameters corresponding to the optimized structures for different magnetic
phases of the equilibrium lattice parameter, bulk modulus, and its derivative, are given in
Table 111 3.

111.3.1.1.3 Energy of formation (or enthalpy of formation) and energy of cohesion

The enthalpy of the formation of a crystal is the difference between the energy of the crystal
and the sum of the energies of the constituent elements in their standard states. To determine
the thermodynamic stability and estimate the possibility of synthesizing these compounds, the
formation energy is a useful norm. The formation energy of K:NaRbAs; in Table 111.3 has

been evaluated using the following equation:
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E¢(K;NaRbAs;) = Eo:(K;NaRbAs;) — 2E(K) — E¢ot(Na) — Eot (Rb) — 2E o (As) (I11.2)

Where, E;,.(K;NaRbAs,)is the total energy of K,NaRbAs,; while, E.,;(K), E;:(Na),
E:,:(Rb) and E,;(As) correspond to the total energy for K, Na, Rb, and As, per atom,
respectively. The obtained negative formation energy of -0.0642 Ry, for the studied
compound, indicates that this material is thermodynamically stable. Therefore, it can be
synthesized in the DHH structure.

We calculated the phonon dispersion diagram of the KoNaRbAs, material using the linear
response method within the density functional perturbation theory (DFPT) as implemented in
the CASTEP computational software[8]. The CASTEP computational code is an
implementation of the pseudo-potential plane-wave method (PP-PW) in the framework of
density functional theory (DFT). To ensure accurate total energy calculations, a plane-wave
basis with a cut-off of 770 eV and a 6x6x4 Monkhorst—Pack scheme k-point grid were
applied. The obtained phonon dispersions along lines of high symmetry in BZ are shown in
Figure 111.4. The absence of soft modes (imaginary modes; negative frequencies) in a

material implies its dynamic stability.

Frequency (THz)

7 A M T Z RXT

Figure.ll1. 4 Phonon dispersion curve of the K.NaRbAs; compound.

The equilibrium lattice constant (a,), bulk modulus (B), its pressure derivative (B), and
formation energies (Eformation) Of the compounds are listed in Tablelll.3.The results, presented
in Table 111.3, show that the bulk modulus (measure of compression resistance) diminishes as

X atomic number rises.
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Table.111.3 Calculated lattice parameter (A), bulk modulus (GPa), its derivative pressure, and

formation energies E_formation(Ry) for K:NaRbAs; in their FM phase with structure type 1.

Alloy Phase ay, (apyy = ayy/VvV2, B(GPa) B’ Eformation
CpuH = AHH)
HH: KNaAs®  FM 7.564 14.835  4.166  -0.0381
AFM 7576 14.881  3.931
NM  7.573 14.972  4.086
HH: KRbAS®  FM 8.173 11.117  4.253  -0.0355
AFM  10.319 10.931  4.055
NM  8.138 11.056  4.443
DHH: FM 5.2917 12.6115 4.164  -0.0642
KoNaRbAs;

I11.3.2.1 Elastic properties

The mechanical behavior of crystals is strongly tied to their elastic properties, which enable us
to examine crucial details about mechanical stability and comprehend the kind of forces in
materials. Using the IRelast package, integrated into the WIEN2k code, the elastic constants

are evaluated in order to check the mechanical stability of our compound.

Compounds that have a tetragonal structure have six independent elastic constants, denoted
by; Ci1, Ci2, Ci3, Ca3, Cas and Ces, are necessary and sufficient to characterize the elastic
behavior of the K:NaRbAs; alloy. The mechanical stability of a tetragonal structure requires

that Born's stability criteria be satisfied [9].
(€11 —2C12) >0,
(Cy1 + C33 — 2C43) > 0,
(2Cy1 + C33 + 2C1, + 4Cy3) > 0,
Ci1>0,C55>0,C4 > 0,Ce >0 (11.3)

The obtained elastic constants satisfied all the Born’s stability criteria. So; The K2NaRbAs;
alloy is confirmed to be mechanically stable. The computed Cj; constants are given in Table
I11. 4. The following formulae can be used to estimate various mechanical quantities such as

Bulk (B), shear (G), Young’s (E) moduli, anisotropic factor and Poisson’s ratio:
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B = (2C11 + C33 + 2C12 + 4‘C13)/9 (|“4)
15 '
9BG
= (111.6)
_ (3B-2G)
v= T (11.7)

It can be observed that the bulk modulus value, determined by equation (04), calculated
through the elastic constants of the studied alloy is fairly in agreement with that obtained from

the total energy optimization.

The estimated data shows that KoNaRbAs, can resist reversible deformation brought on by

shear stress and can endure distortion better than its parent HHs.

Table.111.4 Calculated elastic constants Ci1, Ciz, C13, Cas, Cas, Ces, bulk B, machinability
index B/Ca4, Shear G, Young E moduli, hardness H (in GPa), anisotropic parameter A ,

B/G , Poison’ s ratio v, for KaNaRbASs; in its structural and magnetic ground states.

Compound B Cii Ci2 Ciz Cs3 Cu BICu Ce G E A BG v H

KNaAs!® 1420 16.40 13.10 // Il 446 318 |/ 299 839 270 4.74 040 0.20
KRbAs!®! 12.08 17.96 9.14 /I Il 416 290 |/ 426 11.43 094 284 0.34 0.45
KoNaRbAs; 12.20 18.27 7.78 9.90 1832 586 2.08 337 4.71 1253 0.27 259 0.33 0.53

To evaluate the brittleness and ductility of a material, it is necessary to present B /G ratio,
where the critical value which separates the ductile and brittle behavior is equal to 1.75
(brittle <1.75 <ductile) [10]. According to Pugh, the B / G ratio for K;NaRbAs, DHH alloy, is
greater than 1.75, which leads us to classify it as a ductile material. In the previous work, The
KNaAs and KRbAs HH alloys[6], from which the KoNaRbAs, DHH alloy is derived, also

showed similar feature.

Machinability is the ability of a metal to be cut to remove material with a satisfactory finish at
low cost. Materials with good machinability (free machining materials) require low cutting
power, obtaining a good finish and without significant tool wear. Factors that typically

improve a material's performance often degrade its machinability, presenting a significant
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engineering challenge. The machinability index, um of a material is defined by /C,, . The
useful material, with a high machinability, should be strong (i.e. high bulk modulus) and
malleable (i.e. low Cas) [11]. The calculated machinability indices are in the sequence:
KoNaRbAs;<KRbAs<KNaAs, as shown in Table 111.4.

Hardness (H) is a measure of the resistance to a plastic deformation in the field of materials
science (the opposite of softness). Strong intermolecular bonds typically describe a
macroscopic hardness. Ductility, elastic stiffness, plasticity, deformation, strength, toughness,
viscoelasticity, and viscosity are all factors that affect hardness. H is expressed by[12]:

_ (1-2v)E
T 6(1+v)

(111.8)

The KoNaRbAs, DHH has the highest hardness of 0.53 GPa, compared to those of their
parents HHs, illustrated in Table 111.4.

The Zener contrast factor is strongly correlated with the possibility of inducing micro cracks
in materials, and it is an important physical quantity that informs us about the structural
stability. For an isotropic system, A equals the unity, and the divergence from it measures the
degree of elastic anisotropy. One may observe, from Table 111.4, that the K;.NaRbAs, DHH is
more anisotropic than its parent HHs. In order to comprehend the nature of a compound's
bonding force, Poisson’s ratio (v) is utilized. In our case, the found v values, which ranged

between 0.25 and 0.5, suggest the presence of ionic character bonding in these compounds.

In fact, three-dimensional surfaces can also be used to describe the anisotropy of a material in
specific directions. For that, the software MATrix LABoratory, which is made and published
by J. Nordmann et al [13], was used to plot the 3D anisotropic surface figures of bulk,
Young's and shear moduli and Poisson’s ratio. It is worth mentioning that this software was
used for the first time by H. Bouafia et al [14] in LuAuSn half-Heusler. For tetragonal system,

the expressions of the elastic moduli in this context are as follows:
% = (S11 + S12 + S13) — (S11 + S12 — S13 — S33)13 (111.9)
= Sy (1 + 1) + (2813 — Saa) (Z13 + BBI2) + 314 + (281 + Se6) 1213 (111.10)

2= Sus + [(S11 = S12) =2 (1= 18) +2(Suy + S35 — 2513 — S B (1 —13)  (111.12)
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Ly sin 6 cos ¢
where<l2> = (sin 6 sin <p>, and S;; is compliance coefficient.
l5 cos @

By = [2(Cy; + C13) + C33 + 4C131/9
Gy = [M +3Cy; —3Cy; +12C44 + 6Ce4]/30
Br = C2/M
Gr = 15{(18By/C?) + [6/(C11 — C12)] + (6/C4s) + (3/Co6)} ™!
Where €2 = (Cy; + C15)Cs3 — 2C5;M = Cyq + Cyp + 2C35 — 4Cy5
By = (BV + BR)/Z

Gy = (GV + GR)/Z

(111.12)
(111.13)
(111.14)
(111.15)
(111.16)
(11.17)

The Young’s modulus (E), Poisson’s ratio (v) and the Zener anisotropic factor are computing

with the following equations:

9By G
EH — HYH
3By+Gy

__ 3By—2Gg
2(3By+Gg)

G B
AV=52 4 -V
Gr Br

-6
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Figure.l11.5 3D graphical representation of (a) bulk, (b) Young's and (c) shear moduli and(d)
Poisson’s ratio of DHH K2NaRbAs,.

The 3D surface of an isotropic system would have a spherical shape; therefore any deviation
from that shape reflects the degree of anisotropy. As per Figure.lll.5, the surfaces of (B), (E)
and (G) moduli and (v) clearly deviate from a spherical shape, which represents the clear

elastic anisotropy of Ko.NaRbAS;.

Among these mechanical properties, the bulk modulus of KzNaRbAs; is nearly isotropic. This
is evident in 3D representation (refer to Figure.ll1.5 (a)) which appears almost spherical (i.e.

not spherical), as expected for a tetragonal structure. For the Young's modulus, we can
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observe a significant deviation from the sphere shape along the <111> direction, whereas for

the shear modulus and Poisson’s ratio, the deformation is along <001> direction.

The universal anisotropy index A", which is determined by the upper and lower limits of the
bulk and shear moduli, is expressed by Eq I11.20. The crystal displays isotropic behavior
when A is equal to zero, and any deviation from this value indicates elastic anisotropy. Our
compound exhibits elastic anisotropy, as its computed value of AY was found to be 0.27.

II1.3.1.2.1 Debye temperature OD and elastic wave velocities
The Calculation of the elastic constants has an impact on how the materials behave when

heated; as a result, we can assess several thermal properties, such as the Debye temperature
and the melting temperature, which are listed in Table 111.5. The Debye temperature (6p) is

calculated, using the equation below[10]:

L2 ]1/3vm (111.22)

0p = —
b kB 4-11'V0

where h is Planck’s constant, kg is Boltzmann’s constant, Vo is the average atomic volume,
and v, is the average sound wave velocity, which depends on the transverse (v;) and

longitudinal (vi) sound velocities [15]:

V= E (%+ %)]_1/3 (111.22)

Vi
and these are given by equations (111.23) and (111.24), as follows:

3B+4 G
3p

v, = (111.23)

and

v, = % (111.24)

where p is the density. The outcomes of our calculations are given in Table 111.5.

Table 111.5 Calculated longitudinal (vi), transverse elastic wave velocities (vi), average
acoustic (vm) velocities (in m/s), Debye (6,) and melting (Tm) temperatures (in K) of

K2NaRbAs; in its structural and magnetic ground states.
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Compound v, Vi Vim 0o Tm
KNaAs!® 2941.36 1193.26 1351.07 121.746 649.9393
KRbAs!®! 2705.1 1324.81 1487.96 124.094 622.1995

KoNaRbAs, 2843.92 1436.11 1610.09 139.307 436.297

I11.3.3.1 Electronic properties

Double-half Heusler materials exhibit a variety of interesting electronic properties.
Understanding their electronic properties requires that the next electronic properties are
inspected at the equilibrium lattice constant using the GGA approach to describe the electron
profile.

I11.3.3.1.1 Band structures:
Figurelll.6 shows the spin-polarized band structures for the compound K:NaRbAs;
calculated by GGA and TB-mBJ approximations. These are drawn along the high symmetry

points in the first Brillouin zone.

R A rA Xz M X I' R A r A xz M zx T
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Figure.l11.6 Calculated band structure of KoNaRbAs, compound in both (a, ¢) spin-up and (b,
d) spin-down states by (a,b) GGA and (c,d) GGA+mBJ approximations.

We can see, for the spin down states of KoNaRbAs;, a metallic character due to the
intersection of the valence bands with the Fermi level. On the other hand, for the spin-up
channel, the compound exhibits a semiconductor character. In this channel (spin-up), we can
see that the compound K:NaRbAs, has an indirect band gap of 1.40 eV and 2.62 eV
calculated by GGA and TB-mBJ approximations. The half-metallic gap (HMGap) is inferred
from the valence band maximum (VBM) which is closer than conduction band minimum
(CBM) to the Fermi level. The obtained half-metallic gap values are 0.34 eV and 0.39 eV for
GGA and TB-mBJ methods, respectively. Therefore, we can see that the TB-mBJ method
opens the band gap, located at high symmetry points I and X, for the valence band maximum

(VBM), and conduction band minimum (CBM), respectively.

I11.3.3.1.2 Densities of electronic states:

To explain the contribution of the different electronic states to the band structures, it is also
interesting to determine the total (TDOS) and partial (PDOS) densities of states. In order to
find out which states are responsible for the bond. The total and partial densities of states were

calculated for both spin channels (i.e. spin-up and spin-dn), as shown in the Figure.ll1.7.

From both approaches (GGA, and GGA+mBJ), The PDOSs show that spin-exchange
splitting, fundamentally originated from p states of Arsenic (As) atoms, which mainly

contribute to the TDOS for the spin-up and-down channels, around the Fermi level.
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This exchange splitting causes the spin-polarization of 100%, as defined by equation:

N 29
where p;(Er) and p;(Ep)are the spin-dependent density of states at Er and (1) and (])
represent spin-up and spin-dn states, respectively. P equals zero for paramagnetic or
antiferromagnetic materials. As shown in Figure.lll.6 our studied material is fully spin-
polarized (i.e. P=100%), indicating its half-metallic character. However, s and p states of K,
Na atoms as well as Rb-d have little contributions to the TDOS for both spin channels, around
Er.
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Figure.l11.7 Calculated DOS of KaNaRbAs, compound in both spin-up and spin-down states
by GGA and GGA+mBJ approximations.

I11.3.4.1 Magnetic properties:

To describe the spin effect on the considered material, we have computed its magnetic
properties. The local, interstitial, and total magnetic moments for the DHH K>NaRbAs; alloy,
estimated by employing GGA approach are grouped in Table 111.6. One can see that the total
magnetic moment has an integer value of 2ug per unit cell which fulfills the necessary
condition of the half-metallic behavior for our compound in tetragonal phase. From Table 4,

the main contribution, to the total magnetic moment comes from Arsenic atoms, which is
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similar to its previously studied parent HH alloys KNaAs and KRbAs, with the participation

of the interstitial magnetic moment.

Table.l11.5 Calculated total, atom-resolved and interstitial magnetic moments (in pg) in the

unit cell for KaNaRbAs: in its structural and magnetic ground states.

Compound  Myot Mk Mna MRrb Mas Mint
KNaAs!®! 1.000 0.017 0.001 // 0.420 0.562
KRbAs!®! 1.000  0.010 0.016 0.399 0.575

KoNaRbAs; 2.000 0.013 -0.004 0.033 0.422 1.100

I11.3.5.1 Thermoelectric properties:
Thermoelectricity has recently gained popularity as an ‘‘environmentally friendly’’ technique
because it does not use moving parts or chemical reactions resulting in no waste matter. The

efficiency of a thermoelectric material is determined by the dimensionless parameter ZT,

2
figure of merit, which is given by Z; = % , Where o is the electrical conductivity, S is the

Seebeck coefficient, k is the thermal conductivity of the material and T the temperature in K.
A substance with a high Seebeck coefficient S, high electric conductivity, and low thermal
conductivity is ideal for thermoelectric applications. Many recent investigations on half
Heusler alloys demonstrated that they have high energy factors (S%c), leading scientists to

concentrate their study on these materials.

In this part, we thoroughly examine the thermoelectric behavior of the considered DHH alloy
to determine if it can function as a thermoelectric material. So, we employed semi-classical
Boltzmann transport theory, based on a smoothed Fourier interpolation of the bands, as
implemented in the BoltzTraP code, to investigate the thermoelectric characteristics of
KoNaRbAs; DHH alloy. In the same temperature range, from 150 K to 1000 K, thermal (ke/t),
and electrical conductivity (o/t), and Seebeck coefficient (S) were calculated. The energy

spectral density of electrical conductivity is given by the following equation:

— 2 . s B(E—Eik)
Gap(e) = 1 Lik Tiaeva (i 1 v () =5 (111.26)
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where a and B are the coordinate components, i is the electronic band number, k is the wave
vector, N is the total number of k points, e is the elementary charge, t is the relaxation time of

the charge carrier, and ¢ is the band energy. Also, the group velocity v is:

. 10g;k
V(i1 = 10

(111.27)

Using Eq. (111.28), the conductivity tensor g, can be written as a function of temperature T

and Fermi level p as follows:

_ 0f(T,g,
Gup(T, 1) = = [ Go(e) |- 2021 de (111.28)

In Eq (111.29), Q is the unit cell volume and f is the Fermi-Dirac distribution. Similarly, the

Seebeck coefficient tensor S,z can be written as:

— of(T.e,
Sap(T 1) = srecry J Gap(®) (e = ) |- 702 de (111.:29)

The Seebeck coefficient of materials with holes (p-type materials), as dominant charge
carriers, is positive whereas it is negative for n-type materials (i.e. electrons as dominant
charge carriers). Figure.ll1.8 shows that the Seebeck coefficient, in the spin-dn channel,
decreases as the temperature rises. In the spin-up channel the opposite occurs. The situation
becomes the opposite in the spin- up channel. The Seebeck coefficient (S) is 1259.3. uV/K in
the spin-up state at ambient temperature (300°K) confirming the presence of electrons as the
majority carriers, while the Seebeck coefficient (S) is 57.9 uV/K in the spin-dn state; these
findings show that the K:NaRbAs, DHH alloy has a high positive spin-up Seebeck
coefficient. As a result, This DHH is p-type material.
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Figure.l11.8 Temperature dependence of the Seebeck coefficient of the spin up and spin dn
channels of K:NaRbAs,.

Figure.l11.9 depicts the Fermi level plot of the electrical conductivity of the studied

compound as a function of temperature for both spin channels is shown. In the spin-up, up to

a particular temperature threshold (400 K), the electrical conductivity is nearly constant. After

that the electrical conductivity starts to increase; while in the spin-dn, the electronic

conductivity (o/1) increases as temperature rises.

The value of electrical conductivity per relaxation time in the spin-up state for the DHH at

room temperature (300 K) is O while, in the spin-dn state, it is 236.4810’Q*m?s™. Due to

lower DOS values at Fermi level, the electrical conductivity values for the spin-up channel are

lower than those of the spin-down channel. These results demonstrate a high electrical

conductivity and, consequently, a low resistivity of this material.
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Figure.l11.9 Temperature dependence of the electrical conductivity for the spin up and spin

dn channels of K;NaRbAs:.

Figure.l11.10 displays the temperature dependence, of the electronic thermal conductivity,

scaled by the relaxation time, for spin-up and spin-down channels, of the electronic thermal

conductivity, scaled by the relaxation time. The figure shows that the conductivity increases

as the electronics become thermally excited with rising temperature and can conduct more

heat. This behavior is indicated by a character similar to (o/t). For the examined alloy, a

linear increase in k. /T is observed for temperature above approximately 600 K
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Figure.l11.10 Temperature dependence of the electronic thermal conductivity in the spin-up

and spin-dn channels of K:NaRbAs, DHH alloy.
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I11.3.2. half-Heusler VMSb (M = Pd, Pt)
I11.3.2.1 Structural Properties

I11.3.2.1.1The Crystal Structure of Heusler Alloys and Preferred Sites
Half-Heusler alloys typically consist of transition metals X and Y, and a non-magnetic
element Z from groups Ill, 1V, or V in the periodic table. To determine the most stable
structural phase and predict ground state properties, the energy minimization method was
used to calculate the lattice constants and bulk modulus of a superposition of a rock-salt and
zinc-blend structure. This family of compounds has a cubic structure with the space group
(no. 216 F-43m), written by a=b =c and a = =y [16, 17] (see Figure I11.11). Table |
summarizes the three equal atomic arrangements possible for this structure type.

Type 1 Type 11 Type 111

Figure.l11.11 Different types of half-Heusler structures.

Table.l11.6 Possible atomic arrangements of the half- Heusler compounds VMSb (M= Pd,
Pt).

Type V M Sb

Type | 0,0, 0) (1/2, 1/2, 1/2) (1/4, 1/4, 1/4)
Type Il (1/4, 1/4, 1/4) 0,0, 0) (1/2, 1/2, 1/2)
Type 11 (172, 1/2, 1/2) (1/4, 1/4, 1/4) 0,0, 0)

I11.3.2.1.2 Structural optimizations and magnetic order:

The determination of the most stable structure and equilibrium lattice parameter of a material
under study is a crucial step in first principle calculations. This information allows us to
subsequently access other physical properties ,such as mechanical, electronic ,and magnetic
properties. Figurelll.12 presents the total energy curves (Eq.111.30) as a function of volume
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for VMSb compounds where M is either Pd or Pt . It observed that the ferromagnetic (FM)
phase has the lower energy than the non-magnetic (MN) phase for the structure type 111 . The
Bich-Murnaghan equation of state was used to use to obtain the total energy-volume curves
for both compounds.

(e,

Br | B'-1 B'-1

E(V):Eo+ﬁl 1] - (111.30)
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Figure.l11.12 Calculated total energy of VPdSb and VPtSb compounds in their FM and NM

phases as a function of the volume.

We found that the ferromagnetic phase has the lower energy for both VPdSb ( -24956.525)
and VPtSb (-51754.802), respectively. Figurelll.12 affirms the structural stability of VMSb
(M= Pd, Pt) composites in FM structures type I1l. Which are energetically favorable for the
experimental fabrication of these alloys.The lattice parameter and bulk modulus of different
compounds vary due to the chemical composition and crystal structure of the material. The

observed difference in lattice constants between VPdSb and VPtSb can be attributed to the
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different atomic radii and electronic structures of Pd and Pt. Pd has a smaller atomic radius
than Pt, which can lead to a smaller lattice parameter. The bulk modulus is a measure of a
material's resistance to compression and is affected by the strength of the bonds between the
atoms. The derivative pressure (B") is a measure of how the bulk modulus changes under
pressure. It indicates that the material becomes less compressible at high pressures, while a
smaller B' indicates the opposite. The specific values of B' for VPdSb and VPtSb in Table
I11.8 can provide insight into how the compounds behave under different pressures. The
differences in lattice parameter, bulk modulus, and B' between the two compounds can be
attributed to the different atomic and electronic structures of the two compounds.

Table.111.7 The calculated values of lattice parameter (A), bulk modulus (GPa), and its
pressure derivative, the minimum energy (Ry) of both compounds VMSb (M=Pd, Pt).

Compound  Phase ao B B’ Emin
VPdSb FM-I1I 6.121 129.044 4.672 -24956.525
VPtSh FM-111 6.160 140.466 4,733 -51754.802

I11.3.2.2 Elastic properties:

The elastic constants play an important role in determining a materiel’s mechanical response
to external forces, such as stress or strain, Ci1, Ci2, and Cauq4 are three independent elastic
constants that describe the behavior of a cubic crystal under stress. Ci; represents the stiffness
of the crystal along one axis, while C1> represents the stiffness between two perpendicular
axes. Finally, Cas represents the shear modulus which is the measure of the crystal's resistance
to shear deformation along a plane parallel to one of its faces. The values of these constants
provide information about the stiffness, shear modulus, and bulk modulus of the material,
which are important for confirming its mechanical stability. The bulk modulus is a measure of
a material’s resistance to uniform compression, while the shear modulus is a measure of its
resistance to shear deformation. By calculating the elastic constants and moduli of a material,

we can predict how it will behave under different types of mechanical stress, and strain.

The elastic constants and moduli of VMSb (M=Pd, Pt) alloys were calculated using the
IRelast package integrated into the Wien2k code [18]. These properties are important for
understanding how a material responds to external forces, such as stress or strain. The elastic

constants for the cubic phases were determined using isotropic strain and volume-conserving
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deformations of the cubic primitive cells. The bulk modulus (B) of the VMSb alloys was also
calculated and found to be within the range of C12 < B < C11, consistent with the criteria for
mechanical stability. Eq 111.31 shows how the elastic constants affect the total energy of the
material as a function of strain (8), providing insight into the material's mechanical response

to external stresses and strains.
E(8) = E(—8) = E(0) + (Cy; — C;13)V,8% + 0(8%) (111.31)

Overall, the results suggest that VMSb (M=Pd, Pt) alloys have the potential to exhibit strong

mechanical properties due to their elastic constants and moduli.

Where E(0) is the total energy of an undisturbed lattice, Vo is the equilibrium volume, and Cij

are elastic constants.

Applying an orthorhombic strain tensor with conserved volume and the following expression,

we can obtain C11 and C12 Eq 111.32.

5 0 0
e=|0 —8 9 (111.32)
0 (1-57)

The bulk modulus B of an isotropic cubic crystal is written as a function of C11 and Ci. as

following:

B = St (111.33)

2

Caswas calculated using a monoclinic strain conserving volume method.

o
e=| 2 0 I (111.34)
4
R ——
The total energy is then represented as follows:
E(8) = E(=8) = E(0) + 3 Cy, V8% + O(5%) (111.35)
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The results, presented in Table 111.8 show that both VPtSb and VPdSb are mechanically
stable according to Born's criteria for the cubic structure[19]. Specifically, the values of Ci1,
C12, and Cyg4 satisfy the conditions Ci1 - C12 > 0, C11 > 0, and Cas > 0, as well as C11 + 2C12 >
0 and C12 < B < Cu.

Table.111.8 The elasticity constants Cij (in GPa), the calculated elasticity constants: bulk B,
shear G and Young moduli E (in GPa), anisotropy parameter A, B/G ratio, and Poison’s ratio

v, Op temperature of Debye for VMSb (M = Pd and Pt) compounds.

Compoud Cun1 Cr2 Cua B G E v B/G A Op
VPdSb 147.04 12498 81.76 132.335 53.47 141.37 0.32 2.47 7.41 272.85
VP1tSh 168.73 131.96 89.427 140.221 60.41 160.41 .314 2.36 4.86 266.82

These elasticity constants are used to determine the bulk modulus B, shear modulus G,
Young's modulus E, Poisson's ratio v, and anisotropy factor A Table 111.8, which can be

calculated using the following equations:

G= w (111.36)
9BG
E= 20 (111.37)
_ (3B-2G)
v= 820 (111.38)
A =2l (111.39)
C11—C12

The bulk modulus values obtained for VPdSbh (B=132.335 GPa) and VPtSb (B=140.221 GPa)
compounds are in close agreement with those obtained from the structural properties (129.044
GPa, 140.466 GPa), respectively), which confirms the accuracy of the elasticity constants of
VMSb (M=Pd, Pt) alloys. The Poisson’s ratios (v) of VMSb (M = Pd, Pt) (0.32, 0.31 )
respectively are higher than (0.25) suggests a high metallic behavior as inter-atomic bonding
,for ductile materials, confirming the ductility of these compounds according to Frantsevich’s
rule. This could be attributed to the low elasticity constants and bulk modulus B, which
promote material ductility. Additionally, the B/G ratios for both VPdSb (2.474) and VPtSb
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(2.363) compounds are higher than the critical value of (1.75), which classifies them as

ductile materials.

The young modulus of VPtSb (160.4 GPa) is higher than that of VPdSb (141.4 GPa). To
describe the elastic properties of different materials, the anisotropy coefficient of expansion as
well as the elastic anisotropy are used to cause micro-cracks in ceramics. The elastic
anisotropy of VPdSbh and VPtSb alloys is demonstrated by the three-dimensional Young's
modulus diagrams in Figure 111.13. The values of the anisotropy parameter A were obtained
by applying Eq 111.39 as seen in Table 111.8. For an isotropic material, A=1, whereas values
greater or less than one indicate a higher or lower level of anisotropic elastic behavior. Both
compounds show an elastic deformation anisotropy (A#1), which supports the anisotropic
material hypothesis. Further computations are required to fully comprehend the properties of

the structural intermetallic compounds.

1096
103,4
97,24
91,06
R4,88
78,70
66,34
60,16
53,98

Figure.l11.13 3D-representation of Young's modulus of both compounds: a) VPdSb and b)
V/PtSh.

I11.3.2.2.1 Debye temperature Op and elastic wave velocities

The Debye temperature Op is an important physical parameter and is closely related to several
physical properties. It is determined from Young's modulus E, the compressibility modulus B,
and the shear modulus G. At low temperatures, one of the standard methods for calculating
the Debye temperature Op deduced from the elastic constants is the link that exists between
the average speed of sound propagation v and Op obtained from the Anderson relation [20,
21].

The Debye temperature is given by the following equation:
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1

6y == 2| v, (111.40)

kB 477.'V0

Where h, ks and Vo represent Planck's constant, Boltzmann’s constant, and the atomic

volume, respectively. Vi, is provided for a polycrystalline material by:

-1
A (111.42)

y _1
moo3lvi v}

Where V| and Vt are the longitudinal and transverse velocities of sound which are calculated
using the bulk modulus B and shear modulus G as follows[22]:

1

v1==(3ﬁ;fG)5 (111.42)
v = (g)% (111.43)

Furthermore, the melting temperature was deduced, using the expression for cubic metals
[23]:

Ty = 553 + 5.91C;, (111.44)

The results of our calculations are shown in Table 111.9. It should be noted that there are no

experimental or theoretical data in the literature for the comparison of our results.

Table.111.9 The calculated transverse and longitudinal elastic wave velocities, the average
wave velocity (m.s?) , the temperature of Debye (K) , and the melting temperature for VPdSb
and VPtSb (K) compounds.

Compounds  vi Vi Vi 0p Twm
VPdSb 2174.16 4762.02 2450.52 272.85 1422.0282
VPtSh 2144.96 4465.21 2411.61 266.82 1550.2285
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I11.3.2.3 Magnetic properties

The magnetic moment is a crucial property in the field of spintronics, and it was calculated for
the Heusler alloys with half-metallic behavior using the optimized lattice parameters. The
total magnetic moment of these alloys follows the Slater-Pauling (SP) rule [24], which is one
of the methods used for evaluating the magnetic moments of Heusler and half-Heusler
compounds. For half-Heusler compounds, the total magnetic moment can be expressed by :

M = Zr-18 (111.45)

where M; represents the spin magnetic moment and Zr is the total number of valence
electrons. Table 111.10 presents the total and local magnetic moments for both VMSb (M =
Pd and Pt) compounds, including contributions from atomically resolved magnetic moments
(WC-GGA, LSDA+U, TB-mBJ) and interstitial magnetic moments.

Table.111.10 Total and partial magnetic moments (WC- GGA, LSDA+U, TB-mBJ) in (us)
per unit cell.

Compound Functional  Magnetic moment

Mint My Mm Msp Mt

VPdSh WC-GGA 0.334 1.715 0.026 -0.076 2.000
LSDA+U 0.341 1.685 0.037 -0.063 2.000
TB-Mbj 0.261 1.802 0.007 -0.071 2.000
VPtSh WC- GGA  0.336 1.694 0.017 -0.047 2.000
LSDA+U 0.307 1.756 -0.022 -0.041 2.000
TB-Mbj 0.254 1.731 0.028 -0.014 2.000

According to Table I111.10, the spin magnetic moment of half-Heusler compounds is
calculated by the difference between the spin-up and spin-down states. The compounds have a
Cuw structure with three atoms in each unit cell [25]. For ternary 1:1:1 half-Heusler
compounds such as VMSb (M = Pd, Pt), we note that in each of the functions (WC-GGA,
LSDA + U, TB-mBJ), there is no change. The total magnetic moments are around 2ug. In
these compounds, the V atom has the most significant contribution to the total magnetic
moment, with a small presence of an M magnetic moment. The local magnetic moment of the
Sb atom is negligible for both alloys and behaves similarly to the s-p element in conventional

Heusler alloys.
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I11.3.2.4 Electronic properties

I11.3.2.4.1 Electronic band structure

Electronic structure calculation plays an important role in determining the magnetic properties
of half Heusler compounds and, in particular, in predicting half-metallic ferromagnetism.
Using electronic structure calculations, one can design materials for specific spintronic

applications. for this, we study the band structures of the compounds VVPdSh, VPtSb.

The band structures of the VMSb (M = Pd and Pt) compounds were analyzed by plotting their
spin-polarized band structures using WC-GGA, LSDA+U, and TB-Mbj approximations
Figures 111.14 and 111.15. were determined along the high symmetry path of the first
Brillouin zone. The analysis revealed that the spin-up channel of VPdSbh compound have a
metallic nature due to the cross of Fermi level by the valence band maximum (VBM) and
conduction band minimum (CBM). but for VPtSb compound the electronic properties were
found to depend on the computational method used. The WC-GGA, LSDA+U,
approximations predicted a metallic nature, while the TB-MBj approximation predicted a
semiconductor behavior, with an energy gap of Eg =0.48. This due to the maximum valence
band being located at X, which does not coincide with the minimum conduction band at point
L. Overall, the electronic properties of these compounds are important for understanding their

potential use in electronic devices, and other applications.
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Figure.l11.14 The band structure of the VPdSb compound using: WC- GGA, LSDA+U, and
TB-mBJ.
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Figure.l111.15 The band structure of the VPtSb compound using: WC- GGA, LSDA+U, and
TB-mBJ.

I11.3.2.4.2 Densities of states:

The electronic density of states (DOS) is a fundamental concept in solid-state physics that
describes the distribution of energy levels available to electrons in a material . The DOS is
typically represented by the total (TDOS) and partial (PDOS) density of states .The total
state density (TDOS) allows access to the electronic conduction properties of a material,
while the partial densities of state (PDOS) are used to determine the structure of the chemical
bonds between atoms of a crystal or molecule. The projections of the total state density
depend on the radii of the spheres on which the partial state densities are projected and
therefore only give access to qualitative information [26]. The Figures 111.16, represent the
densities of the electronic states of the half Heusler compounds VPdSh, VPtSh, respectively,
they are calculated with Tran-Blaha modified Becke-Johnson (TB-mBJ). The vertical line in
red indicates the Fermi level (Eg). DOS of the half Heusler VPdSh VPtSh, reveals that d states
of V atom mainly contribute to the total density of states for the spin-up and -down channel
states around the Fermi level. But, d states of Pd , and Pt have a contribution to the spin-
down and -down channel states between -6 eV and -3 eV, but d states of Sb have no

contribution. The total DOS of the compounds show the half-metallic nature.
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Figure.l11.16 Total and Partial DOS of the VPdSb and VVPtSb compounds obtained by the
TB-mBJ approach.
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111.3.2.4.3 Effect of pressure on band structure properties

The study of materials under the effect of hydrostatic pressure is a very important and
attractive subject. The most important phenomenon that occurs under the effect of applied
pressure is the sudden change in the arrangement of atoms in the crystal.

In order to study the effect of pressure on the electronic properties of our material, we
performed FP-LAPW calculations on different volumes at different pressures. Note that the
calculations were performed using the WC-GGA approximation. The variation of the lattice
parameter as a function of hydrostatic pressure is given by the following expression [27]:

PWV) =1 (K)B'] —1 (111.46)

Vo

Where B is the modulus of compressibility, B its first derivative, V is the volume under
pressure, and VO is the volume at zero pressure. In the present work, we have also studied the
electronic properties under the effect of hydrostatic pressure in the range (0-20 GPa) for the
materials VPdSb and VVPtSb. Figures 111.17,111.18 present the variation The band structures

for the spin-up and spin-down channels of both compounds.

Table.l11.11 The calculated lattice constant(A), electronic band gaps for spin down (eV) and

the electronic band structure nature of VPdSb and VVPtSb compounds.

Material ressure (GPa) a (A) EQ_pown (eV) Nature of band gap

VPdSh 0 6.121 0.51 Indirect
5 6.194 0.47 Indirect
10 6.257 0.44 Indirect
15 6.313 0.41 Indirect
20 6.363 0.37 Metal

R o 6.160  0.58 Indirect
5 6.227 0.54 Indirect
10 6.286 0.51 Indirect
15 6.339 0.48 Indirect
20 6.386 0.43 Direct
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Figure.111.17 Band structure of VPdSD alloy (in the 0—20 GPa range) at optimized lattice

constant.
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Figure.111.18 Band structure of VVPtSb alloy (in the 0-20 GPa range) at optimized lattice

constant.

We notice from Figure (111.17, 111 18), both compounds exhibit a metallic nature in the spin-
up state due to the valence band maximum (VBM) and conduction band minimum (CBM),
while the spin-down form shows a semiconducting nature. For the VPdSb compound, the
indirect band gap (Eg) gradually decreases from (0.51 eV to 0.41) eV under pressure (0 to 15
GPa). However, the compound loses its half-metallic state at (20 GPa) with Eg = 0.37 eV.
The calculated band gaps and lattice constants (A) are presented in Table VI. As for VPtSh,

the spin-up channel is metallic, while the compound exhibits a semiconductor nature with
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indirect gaps of Eg = (0.58, 0.54, 0.51, and 0.48 eV) at pressures ranging from (0 to 15 GPa.
At 20 GPa), the compound shows a direct band gap of (0.43 eV) in the spin-down channel. In
summary, increasing pressure gradually changes the electronic properties from half-metallic

to metallic characters.
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Conclusion

In the present work, we performed a series of first-principal calculations based on the method
of linearized augmented plane waves with total potential (FP-LAPW) implemented in Wien2k
code. By utilizing the generalized gradient approximation GGA and TB-mBJ as exchange-
correlation potential, we determine the structural, electronic, magnetic, and elastic properties
of Heusler alloys, namely, (K-NaRbAs,, VPdSh, and VPtSb).

The structural optimization results showed that K:NaRbAs; compounds crystallize in a
tetragonal structure with P-4 m2 space group N°115 and VMSb crystallize in a cubic structure
with F-43 m space group N°216, respectively. The study of the structural properties of the
double half-Heusler KoNaRbAs, demonstrated its stability through its negative formation
energy. For the half-Heusler VMSb (M = Pd, Pt), compounds are half-metallic ferromagnetic
(HMF) and stable in structure type IlI.

Elastic properties: Our results suggest that KoNaRbAs; is a hard material with a high Young's
modulus. We investigated the mechanical profile of KoNaRbAs; and found it to be a ductile
and anisotropic material. Additionally, the study found that both VPdSb and VPtSb
compounds exhibit strong anisotropy, with the <111> direction being more rigid than the

<100> and <110> directions.

electronic and magnetic properties: to determine these properties, we calculated the band
structures and the partial and total densities of states. We have found that K;NaRbAs; have a
half-metallic ferromagnetic character based on the calculated total magnetic moment and
have confirmed this through the band structure and DOS diagrams. Our study shows that the
p-orbitals of arsenic atoms play a major role in the half-metallic ferromagnetism of this DHH

alloys.

The results of the band structures , and the density of states (DOS) revealed that \VPdShb, and
VPtSb compounds exhibit a semiconductor with an indirect gap for the spin-down channels
and a metallic character for the spin up channels, which confirm the half-metallic character of

the two compounds .

Despite applying pressure ranging from 0-20 GPa, there was no significant effect on the

magnetic moments of the two compounds, indicating their resistance to pressure. The
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magnetic properties of both compounds were consistent with the Slater-Pauling rule,

indicating their ferromagnetic, half-metallic character.

The thermoelectric properties of KoNaRbAs DHH determined using the BoltzTraP code
within the Wien2k program show that it has a significantly high Seebeck coefficient and
excellent electrical conductivity in the spin-up and spin-dn channels at room temperature,

suggesting its potential as a promising thermoelectric material.

Our study offers a comprehensive understanding of the properties and potential applications
of KoNaRbAs, DHH. We anticipate that these findings will encourage researchers to do

further experimental and theoretical investigations on DHHs.

This work opens perspectives in materials science for the integration of these half-metallic
compounds since it is possible to use them, with suitable conditions, as new candidates for

applications in the field of spintronic devices.
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Abstract: This paper presents an investigation of the properties of the double half Heusler alloy (DHH) K,NaRbAs,. The
structural, elastic, electronic, magnetic, and thermoelectric properties of the alloy are studied using the full-potential
linearized augmented plane wave method (FP-LAPW) with the generalized gradient GGA approximation, and the
GGA + Modified Becke-Johnson (mBJ) correlation potential is used to calculate the band structures and densities of
states. The K,NaRbAs, DHH alloy is derived from the previously studied parent half Heusler alloys KNaAs and KRbAs in
their ferromagnetic phase of type I structure (FM-I). Our findings confirm the thermodynamic stability and synthesizability
of K;NaRbAs, in normal conditions. The alloy is shown to be resistant to distortion and able to withstand reversible
deformation. The calculated elastic constants indicate that K,NaRbAs, is mechanically stable, ductile, and anisotropic, as
confirmed by 3D representation of its elastic moduli. Furthermore, the total magnetic moment of 2 pg demonstrates its half-
metallic behavior, which mainly due to arsenic atoms. Like its parent alloys KNaAs, and KRbAs, the K;NaRbAs, DHH
alloy could be suitable for use in spintronic technology. Additionally, the thermoelectric characteristics of the K,NaRbAs,
DHH alloy are investigated using semi-classical Boltzmann transport theory, based on a smoothed Fourier interpolation of
the bands, as implemented in the BoltzTraP package.

Keywords: Heusler alloy; Mechanical stability; Half-metallic gap; Spin-polarization; Magnetic properties

1. Introduction attempted to deepen their knowledge of the HMF behavior

to understand, predict and create new half-metallic mate-

Since its initial theoretical prediction, the Half-Metallic
ferromagnetism (HMF) character has attracted enormous
interest and has emerged as one of the most interesting
areas of research. In recent years, researchers have

*Corresponding author, E-mail: friha.khelfaoui @univ-saida.dz

Published online: 19 May 2023

rials, due to their promising potential applications in
spintronic devices[ 1], magnetic tunnel junctions, magnetic
disk drives, spin injection devices and nonvolatile magnetic
random access memories [2]. Ideal HM ferromagnet
exhibits metallic nature in one spin channel (“up” or
“down”) and semiconducting(or insulating) nature in the
other spin channel, revealing a 100% spin polarization at
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the Fermi level [3, 4] with an integer value of the magnetic
moment. The HMF nature was first determined in NiMnSb
and PtMnSb half Heusler alloys [3-5]. Since then the half-
metallic character has been theoretically and experimen-
tally discovered in many other materials such as perovskite
oxides without transition metal LiBeOs[6], KBeOs [7],
KMgOs; [8], rutile TiO, and VO, [9], spinelsMgFe,0,4[10],
fluoro-perovskites Rb(Co/Fe)F; [11], double perovskite
Sr,CrWOg [12], and ternary oxides XMg;0O4 (X = Li, Na,
K, and Rb) [13]. Numerous Heusler alloys can be half-
metals as quaternary Heusler TiZrIrZ (Z = Al, Ga and
In)[14], full Heusler Zr,PdZ (Z = Al, Ga, and In) [15] and
half Heusler KNaAs, KRbAs[16]. Khandy et al. explored
the equilibrium electronic structure of the transition-metal
atom based Heuslers XTaZ (X = Pd, or Pt, Z = Al, Ga or
In))for possible thermoelectric applications[17]. Recently,
a novel class of Heusler alloys, named double half Heusler
alloys (DHH), has been discovered, inspired by the con-
ception of double perovskites A,B‘B‘‘O¢. They could be
thought of as collection of two half Heuslers of formula. It
is worth noting that the first prediction of this class of
materials was made by Anand et al.[18].

Half-Heusler materials have inherently high thermal
conductivities, which limits their thermoelectric efficiency.
To address this issue, Anand et al. investigated a large class
of relatively unexplored DHH compounds, which have
substantially lower lattice thermal conductivities due to
their crystal chemistry. Their work presented a reliable
method for identifying low-thermal-conductivity half-
Heuslers and highlighted a broad composition space for
their potential applications. This research has paved the
way for the systematic discovery of additional families of
sizable intermetallic semiconductors with diverse potential
applications. [18].

In the context of predicting new double half Heusler
alloys and understanding their physical properties,
K,NaRbAs, was investigated as a new compound in this
family. This study presents the structural, elastic, elec-
tronic, magnetic, and thermoelectric properties of the
K;NaRbAs, DHH alloy, and compares them with those of
its parent HH alloys KNaAs, KRbAs[16]. This paper is
organized as follows: after the introduction, Sect. 2 outli-
nes the used computational method. The results and dis-
cussion paragraph are presented in Sect. 3, followed by the
conclusion in Sect. 4, where the main points of the paper
are summarized.

2. Computational method
The properties of K,NaRbAs, DHH compound, derived

from its parent HH alloys KNaAs and KRbAs, were
determined using density functional theory (DFT) with the

full potential linearized augmented plane wave (FP-
LAPW) method [19], as implemented in the WIEN2k
code[20]. The generalized gradient approximation (GGA)
was used to treat the exchange and correlation effects
[21].The muffin-tin (MT) radii, chosen for K, Na, Rb, and
As atoms, are 2.35 a.u, 2.35a.u, 2.35. a.u, and 2.23 a.u,
respectively. The spherical harmonics were developed up
to lmax = 10 within the MT spheres, and at 12, the
Gaussian value Gmax was used. An energy cut-off value of
RMT*Kmax = 8 was used in the interstitial region. The
energy and charge convergences for the iteration procedure
of self-coherence calculations were taken to be 10~ e and
107> Ry, respectively. The First Brillouin zone (BZ) inte-
gration was performed using 1000 K-points by the tetra-
hedral method[22].

3. Results and discussions
3.1. Structural properties

The studied compound K,;NaRbAs, crystallizes in a
tetragonal structure with P-4m2 space group N°115 (see
Fig. 1).

To determine the stable magnetic phase, the optimiza-
tion of both parent HH alloys was carried out within GGA
in their ferromagnetic, non-magnetic, and antiferromag-
netic phases [16], as shown in Fig. 2.

As shown in Fig. 2, the ferromagnetic phase of type I
structure (FM-I) has the lowest total energy for both
compounds, indicating that it is the energetically most
stable phase compared to the non-magnetic (NM) and
antiferromagnetic (AFM) phases at the equilibrium
volume.

Fig. 1 Crystal structure of K,;NaRbAs, DHH alloy
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Fig. 2 Calculated Total Energy vs. Volume for FM, NM, and AFM Phases of (a) KRbAs and (b) KNaAs Compounds (color figure online)

From the obtained magnetic and structural ground states
of KNaAs and KRbAs (FM-I), K,;NaRbAs, structure is
constructed by substituting, in the conventional lattice of
KNaAs, two Na atoms with Rb atoms. Consequently, only
the FM phase of this acquired DHH structure is optimized,
and as shown in Fig. 3, the optimized volume of K,;NaR-
bAs, is 1649.7486 (bohr?).

Then the structural parameters of the equilibrium are
calculated by adjusting the total energy as a function of the
volume, using the Birch Murnaghan equation of state [23].
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The resulted structural ground state of DHH has a parent
HH with a lattice parameter of ayy, which is equal to cpyy,
corresponding to a, b and ¢

("]

}

while ApHH — bDHH = u%’
values, as presented in Table 1.

The obtained parameters corresponding to the optimized
structures for different magnetic phases of the equilibrium
lattice parameter, bulk modulus, and its derivative, are
given in Table 1. The formation energy is a useful norm to
examine the synthesizability and stability of K;NaRbAs,
compound. The formation energy of K,;NaRbAs, in
Table 1 has been evaluated from the following equation:

Ef(KzN&RbASz) = Etm(KzNaRbASZ) — 2EtO[(K)

— E(Na) — Eoi(Rb) — Eii(As)  (2)

where E(Ko;NaRbAs;) is the total energy of K,NaRbAs;;
while, E/(K), Ewt(Na), Eit(Rb) and Eyy(As) correspond
to the total energy for K, Na, Rb, and As, per atom,
respectively. The obtained negative formation energy of -
0.0642 Ry, for the studied compound, indicates that this
material is thermodynamically stable. Therefore, it can be
synthesized in the DHH structure.

Additionally, to verify the dynamic stability of the
K;,;NaRbAs,material, we calculated the phonon dispersion
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Table 1 Calculated lattice parameter (A), B bulk modulus (GPa), B’ its derivative pressure, and Efyuaion formation energies (Ry) for

K;NaRbAs, in their FM phase with structure type I

Alloy Phase apy(apun = ann /2, B (GPa) B Eformation
CDHH = GHH)

HH: KNaAs[16] FM 7.564 14.835 4.166 —0.0381
AFM 7.576 14.881 3.931
NM 7.573 14.972 4.086

HH: KRbAs[16] FM 8.173 11.117 4.253 —0.0355
AFM 10.319 10.931 4.055
NM 8.138 11.056 4.443

DHH: K,NaRbAs, FM 5.2917 12.6115 4.164 - 0.0642

diagram through the linear response method within the
density functional perturbation theory (DFPT) as imple-
mented in the CASTEP computational software [24]. The
CASTEP computational code is an implementation of the
pseudo potential plane-wave method (PP-PW) in the
framework of density functional theory (DFT). To ensure
sufficiently accurate total energy calculations, a plane-
wave basis set cut-off of 770 eV and a 6 x 6 x 4 Mon-
khorst—Pack scheme k-point grid for the integration over
BZ were applied. The obtained phonon dispersions along
lines of high symmetry in BZ are shown in Fig. 4. Note
that absence of soft modes (imaginary modes; negative
frequencies) in the phonon dispersion curve of a material
implies its dynamic stability. Therefore, the absence of soft
modes (negative frequencies) in the phonon dispersion
curve of the title compound confirms its dynamical
stability.

The equilibrium lattice constant (a,), bulk modulus (B),
its pressure derivative (B°), and formation energies (Eg,,-
mation) Of the compounds are listed in Table 1.The results,
presented in Table 1, show that the bulk modulus (measure
of compression resistance) diminishes as X atomic number
rises.

3.2. Elastic properties

The mechanical behavior of crystals is strongly tied to their
elastic properties, which enable us to examine crucial
details about mechanical stability and comprehend the kind
of forces in materials. Using the IRelast package, inte-
grated into the WIEN2k code, the elastic constants are
evaluated in order to check the mechanical stability of our
compound.

Compounds, that have a tetragonal structure, have six
independent elastic constants, denoted by; C;;, C;s Cy3,
C33, Cy4y and Cgg, are necessary and sufficient to charac-
terize the elastic behavior of the K,NaRbAs, alloy. The

mechanical stability of a tetragonal structure requires that
Born’s stability criteria be satisfied [25].

(C11 —2Cr2) >0,

(Ci1 + C33 —2C13) > 0,

(2C11 + C33 +2C1p +4Cy3) > 0,

Ci1>0,C33>0,C44 >0,Ce6 >0 (3)

The obtained elastic constants satisfied all the Born’s
stability criteria. So; The K,NaRbAs, alloy is confirmed to
be mechanically stable. The computed C; constants are
given in Table 2.The following formulae can be used to
estimate various mechanical quantities such as Bulk (B),
shear (G), Young’s (E) moduli, anisotropic factor and
Poisson’s ratio:

B = (2Ci1 + C33+2C1» +4C13)/9 (4)
2C — -2 6 3
G- 11 +C33 — Cip —2C13 + 6Cy4 + 3Cq (s)
15
9BG
E=_20 6
(G +3B) (6)
_ (3B-20) -
[2(33 + G)}

It can be observed that the bulk modulus value,
determined by Eq. (4), calculated through the elastic
constants of the studied alloy is fairly in agreement with
that obtained from the total energy optimization.

The estimated data shows that K,NaRbAs, can resist
reversible deformation brought on by shear stress and can
endure distortion better than its parent HHs.

To evaluate the brittleness and ductility of a material, it
is necessary to calculate B/G ratio, where the critical value
which separates the ductile and brittle behavior is equal to
1.75 (brittle < 1.75 < ductile) [26]. According to Pugh’s
analysis, the B/G ratio, for K;NaRbAs, DHH alloy,
exceeds 1.75, indicating that it falls into the ductile
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category. This result is consistent with our previous find-
ings on the KNaAs and KRbAs HH alloys[16], which are
the parent materials of the K,NaRbAs, DHH alloy.

Machinability is the ability of a metal to be cut to
remove material with a satisfactory finish at low cost.
Materials with good machinability (free machining mate-
rials) require low cutting power, obtaining a good finish
and without significant tool wear. Factors that typically
improve a material’s performance often degrade its
machinability, presenting a significant engineering chal-
lenge. The machinability index, p,, of a material is defined
by B/Cys. The useful material, with a high machinability,
should be strong (i.e. high bulk modulus) and malleable
(i.e. low C.)[27]. The calculated machinability indices are
in the sequence: K,;NaRbAs, < KRbAs < KNaAs, as
shown in Table 2.

Hardness (H) is a measure of the resistance to a plastic
deformation in the field of materials science, which is the
opposite of softness. Strong intermolecular bonds typically
describe a macroscopic hardness. Ductility, elastic stiff-
ness, plasticity, deformation, strength, toughness, vis-
coelasticity, and viscosity are all factors that affect
hardness. H is expressed by[28]:

(1 =2v)E
H= ety (8)

The K,;NaRbAs, DHH has a highest hardness of 0.53
GPa, compared to those of their parents HHs, illustrated in
Table 2.

The Zener contrast factor is strongly correlated with the
possibility of inducing micro cracks in materials, and it is
an important physical quantity that informs us about the
structural stability. For an isotropic system, A equals the
unity, and the divergence from it measures the degree of
elastic anisotropy. One may observe, from Table 2, that the
K;,;NaRbAs, DHH is more anisotropic than its parent HHs.
Poisson’s ratio (v) is a useful parameter for understanding
the nature of a compound’s bonding forces. The calculated
value of v for the K,NaRbAs, DHH alloy is 0.33, which
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Fig. 4 Phonon dispersion curve of the K,NaRbAs, compound

falls within the range of 0.25 to 0.5 observed in its HH
parent compounds. This suggests that the bonding in this
alloy has an ionic character.

In fact, three-dimensional surfaces can also be used to
describe the anisotropy of a material in specific directions.
For that, the software MATrix LABoratory, which is made
and published by J. Nordmann et al.[29], was used to plot
the 3D anisotropic bulk, Young’s and shear moduli as well
as Poisson’s ratio surfaces. It is worth mentioning that this
software was used for the first time by H. Bouafia et al. [30]
for the LuAuSn HH alloy. For a tetragonal system, the
expressions of the elastic moduli are, as follows:

1
3= (S11+ S12 + S13) — (Si1 + S12 — S13 — $33)53 9)
1
E = S11 (l‘l1 + lg) + (2513 - S44) (l%l% + l%lg) + S33l;1
+ (2812 + Se6) 315 (10)
1 Sa4 2
—=S Sii—8p)——|(1-1
G 44+[( 11 12) 2}( 3)
+2(Sll + 833 — 2813 —S44)l§(1 —l%) (11)
[ sinfcosg
where I, | = | sinfsing |, and S; is compliance
I cosf
coefficient.
By = [2(C11 + C12) + C33 +4C13]/9 (12)
Gy = [M+3C11 —3C12+12C44+6C66]/30 (]3)
Br = C*/M 14)

(
Gr = 15{(18By/C?) + [6/(C11 — Cp2)] + (6/Cus) + (3/Cee)}

(15)

where C? = (Ci1 4+ C12)C33 — 2C%3;M =C; +Cp+
2C33 —4C3

By = (By + Bg)/2 (16)
Gy = (Gy +Gg)/2 (17)

The Young’s modulus (E), Poisson’s ratio (v) and Zener
anisotropic factor are computing with the following
equations:

9By Gl

=7 18

B =3B, + Gy (18)
3By — 2Gy

_ 19

' = 203By + Gu) (19)
Gy By

Al=5—"4+""_% 20

GR+BR (20)

The 3D surface of an isotropic system would have a
spherical shape; therefore any deviation from that shape
reflects the degree of anisotropy. As per Fig. 5, the surfaces
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Table 2 Calculated elastic constants C;;, Cja, Cy3, C33, Cyy Cgg, bulk B, machinability index B/Cy, Shear G, Young E moduli, hardness H (in
GPa), anisotropic parameter A, B/G, Poison’ s ratio v, for K,NaRbAs; in its structural and magnetic ground states

Compound B C] 7 C12 C]_g ij C44 B/C44 C66 G E A B/G v H

KNaAs[16] 14.20 16.40 13.10 1 /" 4.46 3.18 1 2.99 8.39 2.70 4.74 0.40 0.20
KRbAs[16] 12.08 17.96 9.14 /" /" 4.16 2.90 1 4.26 11.43 0.94 2.84 0.34 0.45
K,;NaRbAs, 12.20 18.27 7.78 9.90 18.32 5.86 2.08 3.37 4.71 12.53 0.27 2.59 0.33 0.53

of (B), (E) and (G) moduli and (v) clearly deviate from a
spherical shape, which represents the clear elastic
anisotropy of K,NaRbAs,.

Among these mechanical properties, the bulk modulus
of K;NaRbAs, is nearly isotropic. This is evident in 3D
representation (refer to Fig. 5(a)) which appears almost
spherical (i.e. not spherical), as expected for a tetragonal
structure. For the Young’s modulus, we can observe a
significant deviation from the sphere shape along
the < 111 > direction, whereas for the shear modulus and
Poisson’s ratio, the deformation is
along < 001 > direction.

The universal anisotropy index AY, which is determined
by the upper and lower limits of the bulk and shear moduli,
is expressed by Eq. (20). The crystal displays isotropic
behavior when Ay is equal to zero, and any deviation from
this value indicates elastic anisotropy. Our compound
exhibits elastic anisotropy, as its computed value of Ay
was found to be 0.27. As far as we know, there is no
theoretical or experimental information about the K,NaR-
bAs, DHH to compare with.

The Calculation of the elastic constants has an impact on
how the materials behave when heated; as a result, we can
assess several thermal properties, such as the Debye tem-
perature and melting temperature, which are listed in
Table 3. The Debye temperature (6p) is calculated, using
the equation below[26]:

hT o3 1R
Op =— m
D= [4nVJ "

where A is Planck’s constant, kp is Boltzmann’s constant,
Vy is the average atomic volume, and v, is the average
sound wave velocity, which depends on the transverse (v,)
and longitudinal (v;) sound velocities [31]:

(21)

12 1\
m=|=|=+—= 22
m= 5G] &
and these are given by the equations, as follows:
3B+ 4G
V= [22H40 (23)
3p

and

G
V=4 /— (24)
p
where p is the density. The outcomes of our calculations
are given in Table 3.

3.3. Electronic properties

In order to provide a more accurate description of the
electron profile, the following electronic properties were
examined at the equilibrium lattice constant using the GGA
approach.

3.3.1. Band structures

Figure 6 shows the spin-polarized band structures for the
compound K,;NaRbAs,, calculated by GGA and TB-mBJ
approximations. These are drawn along the high symmetry
points in the first Brillouin zone.

We can see, for the spin down states of K,NaRbAs,, a
metallic character due to the intersection of the valence
bands with the Fermi level. On the other hand, for the spin-
up channel, the compound exhibits a semiconductor char-
acter. In this channel (spin-up), one can observe that the
compound K,;NaRbAs, has indirect band gaps of 1.40 and
2.62 eV, calculated by GGA and TB-mBJ approximations.
The half-metallic gap (HMGap) is inferred from the
valence band maximum (VBM) which is closer than con-
duction band minimum (CBM) to the Fermi level. The
obtained half-metallic gap values are 0.34 and 0.39 eV for
GGA and TB-mBJ methods, respectively. Therefore, we
can see that the TB-mBJ method opens the band gap,
located at high symmetry points I and X, for the valence
band maximum (VBM), and conduction band minimum
(CBM), respectively.

3.3.2. Densities of electronic states:

To explain the contribution of the different electronic states
to the band structures, it is necessary to determine the total
(TDOS) and partial (PDOS) densities of states. In order to
find out which states are responsible for the bond. The
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Fig. 5 3D graphical representation of (a) Bulk, (b) Young’s and (c¢) Shear moduli and (d) Poisson’s ratio of DHH K,NaRbAs, (color

figure online)

Table 3 Calculated longitudinal (v;), transverse elastic wave veloc-
ities (v,), average acoustic (y,,) velocities (in m/s), Debye (6p) and
melting (7,,) temperatures (in K) of K,NaRbAs, in its structural and
magnetic ground states

Compound  v(m/s) v(m/s) v(m/s)  O0p(K) T
KNaAs[16] 2941.36 1193.26 1351.07 121.746  649.9393
KRbAs[16]  2705.1 1324.81 1487.96 124.094 622.1995
K,NaRbAs, 2843.92 1436.11 1610.09 139.307 436.297

TDOS and PDOS are calculated for both spin channels (i.e.
spin-up and spin-dn), as shown in Fig. 7.

From both approaches, GGA, and GGA + mBJ, The
PDOSs show that spin-exchange splitting, fundamentally
originated from p states of Arsenic As atoms, which mainly
contribute to the TDOS for the spin-up and-down channels,
around the Fermi level.

This exchange splitting causes the spin-polarization of
100%, obtained by:
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Fig. 6 Calculated band (a) GGA (b)
structure of K,NaRbAs, 6 o 6 7
compound in both (a), (¢) Spin- p % % / d
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where p(Er) and p|(Er) are the spin-dependent densities
of states at Eg, (1) and (|) represent spin-up and spin-dn
states, respectively. P equals zero for paramagnetic or
antiferromagnetic materials. As shown in Fig. 7, our
studied material is fully spin-polarized (i.e. P = 100%),
indicating a half-metallic character of the studied alloy.
However, the s and p states of K, Na atoms as well as Rb-d

(25)

2+
e
=l
\/
B0 peamee— e Ep
T
2
R A T A X ZM = T

have little contributions to the TDOS for both spin chan-
nels, around Epg.

3.4. Magnetic properties

To describe the spin effect on the considered material, we
have computed its magnetic properties. The local, inter-
stitial, and total magnetic moments for the DHH K,NaR-
bAs, alloy, estimated by employing GGA approach are
grouped in Table 4. It is noticeable that the total magnetic
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Fig. 7 Calculated DOS of GGA

d

K,NaRbAs, compound for both 12 i ;
spin-up and spin-down states by

GGA and GGA + mBJ
approximations (color

figure online)

2
Energy (eV)
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Energy (eV)

Table 4 Calculated total, atom-resolved and interstitial magnetic moments (in pg) in the unit cell for K,NaRbAs, in its structural and magnetic

ground states

Compound Mlol MK MNa MRI; MAS Minl

KNaAs[16] 1.000 0.017 0.001 - 0.420 0.562
KRbASs[16] 1.000 0.010 0.016 0.399 0.575
K;NaRbAs, 2.000 0.013 - 0.004 0.033 0.422 1.100

moment of the investigated compound has an integer value
of 2 per unit cell which fulfills the necessary condition of
a half-metallic behavior. According to Table 4, the primary
source of the total magnetic moment in K,NaRbAs, is the
As atom, which is consistent with the findings of previous
studies on its parent HH alloys, KNaAs and KRbAs [16].

3.5. Thermoelectric properties:

Thermoelectricity has recently gained popularity as an
“‘environmentally friendly’’ technique because it does not
use moving parts or chemical reactions resulting in no
waste matter. The efficiency of a thermoelectric material is
determined by the dimensionless parameter Z7, figure of
merit, which is given by: Zy = %51,
trical conductivity, S is the Seebeck coefficient, x is the
thermal conductivity of the material and T is the temper-
ature in K.

A substance with a high Seebeck coefficient S, high
electric conductivity, and low thermal conductivity is ideal
for thermoelectric applications. Many recent investigations
on HHs demonstrated that they have high energy factors

where o is the elec-

(S%0), leading scientists to concentrate their study on these
materials.

In this part, we thoroughly examine the thermoelectric
behavior of the considered DDH alloy to determine if it can
function as a thermoelectric material. So, we employed
semi-classical Boltzmann transport theory, based on a
smoothed Fourier interpolation of the bands, as imple-
mented in the BoltzTraP code, to investigate the thermo-
electric characteristics of K,NaRbAs, DDH alloy. In the
temperature range, from 150 to 1000 K, thermal (k./1),
electrical conductivity (o/t), and Seebeck coefficient
(S) were calculated.

The energy spectral density of the electrical conductiv-
ity is given by the following equation:

o(e — &ix)

82
6'0(/}(8) = NZ ‘E,‘7]<V“(l., k)v/;(i, k) W
ik

where o and f are the coordinate components, i is the
electronic band number, k is the wave vector, N is the total
number of k points, e is the elementary charge, T is the
relaxation time of the charge carrier, and ¢ is the band
energy. Also, the group velocity v is:

(26)
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V(i k) = 25
o

(27)

Using Eq. (27), the conductivity tensor ¢,s can be
written as a function of temperature T and Fermi level p as
follows:

(T =g [ o) - L5

In Eq. (28), Q is the unit cell volume and fis the Fermi—
Dirac distribution. Similarly, the Seebeck coefficient tensor
S.p can be written as:

Sup(T 1) = 7&90;@’ m [t
_ [_ W} de

(28)

(29)

The Seebeck coefficient of materials with holes (p-type
materials), as dominant charge carriers, is positive whereas
it is negative for n-type materials (i.e. electrons as
dominant charge carriers).

Figure 8 shows that the Seebeck coefficient (S), in the
spin-dn channel, decreases as the temperature rises, while
the opposite trend is observed in the spin-up channel.
Specifically, at ambient temperature (300°K), S is.1259.3.
pV/K in the spin-up state, confirming the electrons are the
majority carriers. In addition, the S coefficient is.57.9..uV/
K in the spin-dn state; suggesting a high positive spin-up
Seebeck coefficient in the K,;NaRbAs, DDH alloy. These
findings indicate that this DDH material is of p-type.

Figure 9 depicts the Fermi level plot of the electrical
conductivity per relaxation time (o/1) of K;NaRbAs, as a
function of temperature for both spin channels. In the spin-
up channel, the electrical conductivity remains relatively
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Fig. 8 Temperature dependence of the Seebeck coefficient of the
spin-up and spin-dn channels of K,NaRbAs, (color figure online)
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Fig. 9 Temperature dependence of the electrical conductivity for the
spin up and spin dn channels of K;NaRbAs, (color figure online)
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Fig. 10 Temperature dependence of the electronic thermal conduc-
tivity in the spin-up and spin-dn channels of K;NaRbAs, DHH alloy
(color figure online)

constant up to a particular temperature threshold (400 °K),
after which it starts to increase. In contrast, in the spin-dn
channel, the ¢/t value increases with rising temperature.
The o/t value in the spin-up state for the DHH at room
temperature (300°K) is O while, in the spin-dn state, it is
236.4810""Q""' m~' s7'. Due to lower DOS values at
Fermi level, the electrical conductivity values for the spin-
up channel are lower than those of the spin-down channel.
These results demonstrate a high electrical conductivity
and, consequently, a low resistivity of this material.
Figure 10 displays the temperature dependence, for both
spin-up and spin-down channels, of the electronic thermal
conductivity, scaled by the relaxation time. This is similar
in character to o/7, as is due to the thermal excitation of
electrons at higher temperatures, leading to increase heat
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conduction. In the examined alloy, a, linear increase in
K./t is observed for temperatures above approximately
600 K.

4. Conclusions

In this paper, we have presented a comprehensive theo-
retical investigation of the structural, elastic, magnetic, and
electronic properties of the new DHH alloy K,NaRbAs,
using the FP-LAPW method with GGA and GGA + mBJ
approximations. Our study has yielded several important
findings, which are summarized below:

Firstly, we have determined the structural ground state
of K;NaRbAs, and demonstrated its stability through the
negative formation energy and calculated elastic constants.
We have also shown that this DHH alloy can withstand
distortion better than its reported parent KNaAs and
KRbAs HHs, and can resist reversible deformation carried
on by shear stress. Our results suggest that K,NaRbAs, is a
hard material with high Young’s modulus. Secondly, we
have predicted a half-metallic ferromagnetic character in
K,;NaRbAs, based on the calculated total magnetic
moment, and have confirmed this through the band struc-
ture and DOS diagrams. Our study shows that the p-orbitals
of Arsenic atoms play a major role in the half-metallic
ferromagnetism for this DHH alloy. Thirdly, we have
investigated the mechanical profile of K,NaRbAs, and
found it to be a ductile and anisotropic material. Fourthly,
the calculation of the thermoelectric properties of
K;NaRbAs, DHH, using the BoltzTraP code within the
Wien2k program, shows that it has a significantly high
Seebeck coefficient and excellent electrical conductivity in
the spin up and spin-dn channels at room temperature,
suggesting its potential as a promising thermoelectric
material. Finally, we have discussed the potential of
K,;NaRbAs, DHH for future spintronic applications.

Our study offers a comprehensive understanding of the
properties and potential applications of K;NaRbAs, DHH.
We anticipate that these findings will encourage research-
ers to do further experimental and theoretical investigations
on DHHs.
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Abstract

Using density functional theory (DFT), the equilibrium structural parameters, electronic, magnetic, and elastic properties
of VMSb (M =Pd, Pt) half-Heusler compounds were investigated in this study. Calculations were performed using the full-
potential linearized augmented plane wave (FP-LAPW) method, with the Wu-Cohen generalized gradient approximation
(WC-GGA). Additionally, the electronic band structures and density of states were calculated using exchange and correla-
tion potentials such as Tran-Blaha modified Becke-Johnson (TB-mBJ) and local spin density approximation with the on-site
Coulomb interaction parameter U (LSDA+U). The theoretical results showed that the two half-Heusler compounds VMSb
(M =Pd, Pt) exhibit half-metallic ferromagnetism with a total magnetic moment of 2.000 uy; per formula unit, consistent with
the Slater-Pauling rule. The electronic calculations revealed that VPdSb and VPtSb have spin-down band gaps of 0.45 eV,
0.51 eV and 0.54 eV, 0.58 eV, respectively, by LSDA+U, TB-mBJ. These half-Heusler compounds are promising candidates
for potential applications in spintronic devices, as they offer an effective approach for magnetic and electronic appliances.

Keywords FP-LAPW - LSDA+U - TB-mBJ - half-metallicity - magnetic properties

Introduction

The development of new materials with 100% spin polari-
zation around the Fermi surface has become a significant
research area, as these materials have potential applications
in spintronics,' superconductivity,? shape memory,” and spin
injection in semiconductors.*> Heusler alloys, which consist
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of non-magnetic metals in their pure state, are a promis-
ing candidate for achieving such properties. In 1903, Fritz
Heusler first proposed the idea of producing ferromagnetic
alloys composed of non-ferromagnetic elements such as
manganese and group B elements such as aluminium and
antimony.® The discovery of the first half-metallic ferromag-
netic material, NiMnSb, by Groot in 1983, marked a signifi-
cant milestone in the research of Heusler alloys.’

Recently, researchers have studied the electronic, mag-
netic, half-metallic, and structural properties of various Heu-
sler alloys, including CoTiSb and TiNiSn.*® These alloys
exhibit different physical characteristics, and they are clas-
sified as intermetallic compounds with the stoichiometric
composition X,YZ, which crystallize in the L, structure.
In addition, the half-Heusler type XYZ compounds, which
crystallize in the C;,, phase, have also been widely investi-
gated. These compounds have Wyckoff positions, with X
in position 4a, Y in position 4c, and Z in position 4b.'%!!
The half-Heusler phase has attracted the attention of many
researchers because of its ability to easily adopt a ternary
composition.'?

In this study, the authors used full-potential linearized
augmented plane wave (FP-LAPW) and generalized gradi-
ent approximation (GGA) within density functional theory
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(DFT) to investigate the structural, electronic, elastic, and
magnetic properties of two half-Heusler VMSb compounds
(M=Pd, Pt)."*"'® The results showed that both VMSb com-
pounds exhibited half-metallicity, making them excellent
candidates for spintronic applications.

Computational Details

First-principles calculations were performed using the full-
potential linearized augmented plane wave (FP-LAPW)
method'”*'® in WIEN2k code.' Exchange—correlation effects
were represented using the Wu-Cohen generalized gradi-
ent approximation (WC-GGA)* and the local spin density
approximation with interaction parameter U (LSDA+U).?!
To obtain more precise results of the magnetic and elec-
tronic properties, the Tran-Blaha modified Becke-Johnson
(TB-mBJ) exchange—correlation potential®? was applied,
as this functional is considered to be more accurate than
the standard (WC-GGA, LSDA+U) approaches for repro-
ducing band gap results. To calculate the composite size
(convergence), the parameters Ry, and K, =8 were used,
where K, is the plane wave cut-off, and Ry, is the low-
est radii of all atomic spheres. The Fourier charge density
expansion of the potential in the interstitial area was chosen
using unique K-point sampling from a 15X 15x 15 grid and
G, =12 a.u.7!. The charge density and potential inside the
interstitial zone are lower. Muffin-tin spheres were enlarged

in terms of spherical harmonics up to /,,, = 10.

Results and Discussion

Structural Properties

The stoichiometric composition of half-Heusler alloys typi-
cally consists of transition metals X and Y, and a non-magnetic
element Z from group III, IV, or V in the periodic table. These

alloys have a face-centred cubic (FCC) Bravais structure. To
determine the most stable structural phase and predict ground

Fig. 1 Different arrangements of half-Heusler structures.

@ Springer

state properties, we employed the energy minimization method
by calculating the total energy as a function of the unit-cell
volume. We calculated the lattice constants and bulk modu-
lus of a superposition of a rock-salt and zinc-blend structure.
This family of compounds has a cubic structure with the space
group 216 F-43m, written by a=b=c and a=f=y>*** (see
Fig. 1). The structure type is characterized by correspondingly
occupied Wyckoff positions 4a (0, 0, 0), 4b (1/2, 1/2, 1/2), and
4c (1/4, 1/4, 1/4).25 Table I summarizes the three equivalent
atomic arrangements possible for this structure type,2® and the
atomic arrangements of VPtSb and VPdSb using WC-GGA.
The birch-murnaghan equation of state was used to obtain the
total energy-volume curves for both compounds.”’>

Figure 2 presents the total energy curves (Eq. 1) as a func-
tion of the volume. It is seen that the ferromagnetic (FM)
state is more favourable than the non-magnetic (NM) state in
energy. For the type III structure, we found that the ferromag-
netic state has lower energy in both VPdSb (—24956.525) and
VPtSb (—51754.802), respectively.

On the other hand, the negative value of the total energy
(Fig. 2) confirms that the structural stability of VMSb (M=Pd,
Pt) composites in the FM type III structures are energetically
favourable for the experimental fabrication of these alloys.

vo ’
ﬂ<V>B s 1
B| B -1 B -1 M

It is common for the lattice parameter and bulk mod-
ulus to vary among different compounds, as they are

Table| Possible atomic arrangements of the half-Heusler compounds
VMSb (M=Pd, Pt)

Type \% M Sb

Type I 0,0,0) 172,112, 172) (1/4, 1/4, 1/4)
Type I (1/4, 1/4, 1/4) 0,0,0) (172,112, 172)
Type 111 (172, 112, 1/2) (174, 1/4, 1/4) 0,0, 0)

Type 11

Type I
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Fig.2 Calculated total energy of VPdSb and VPtSb compounds in their FM and NM phases as a function of the volume.

determined by the chemical composition and crystal struc-
ture of the material. In this case, the observed difference
in lattice constants and bulk modulus between VPdSb and
VPtSb can be attributed to the different atomic radii and
electronic structures of Pd and Pt.

Pd has a smaller atomic radius than Pt, which can lead
to a smaller lattice parameter for VPdSb compared to
VPtSb. The bulk modulus, on the other hand, is a measure
of a material's resistance to compression and is affected
by the strength of the bonds between the atoms. Since Pd
and Pt have different electronic structures and bonding
characteristics, they can have different effects on the bulk
modulus of the compound.

The derivative of pressure (B’) is a measure of how the
bulk modulus changes under pressure. A larger B’ indi-
cates that the material becomes less compressible at high
pressures, while a smaller B’ indicates the opposite. The
specific values of B’ for VPdSb and VPtSb in Table II can
provide insight into how the compounds behave under dif-
ferent pressures.

Overall, the differences in lattice parameter, bulk modu-
lus, and B’ between VPdSb and VPtSb can be attributed
to the different atomic and electronic structures of the two
compounds.

@ Springer
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Elastic Properties

In materials science, elastic constants are parameters that
describe the response of a material to applied mechanical
stresses or strains. C,;, C,, and C,, are three independent
elastic constants that describe the behaviour of a cubic crystal
under stress. C;; represents the stiffness of the crystal along

Overall, the results suggest that VMSb (M =Pd, Pt) alloys
have the potential to exhibit strong mechanical properties due
to their elastic constants and moduli.

Applying an orthorhombic strain tensor with conserved
volume and the following expression, we can obtain C;; and
Cy, (Eq. 3).

one axis, while C,, represents the stiffness between two per- 60 0
pendicular axes. Finally, C,, represents the shear modulus, € = 0 -6 (Z 3)
which is the measure of the crystal’s resistance to shear defor- 00 ﬁ

mation along a plane parallel to one of its faces. The values
of these elastic constants provide valuable information about
the mechanical stability and strength of the crystal, as well as
its ability to withstand stress and strain without undergoing
plastic deformation or failure. Additionally, the elastic con-
stants can be used to predict the behaviour of the material
under different mechanical loads, which is essential in many
engineering applications. The elastic constants and moduli of
VMSb (M =Pd, Pt) alloys were calculated using the IRelast
package integrated into the Wien2k code.**?! These properties

The bulk modulus B of an isotropic cubic crystal is written
as a function of C;; and C, as follows:

C,+2C
p= -l 12

. 0

C,, was calculated using a monoclinic strain-conserving
volume method.

02 o0
are important for understanding how a material responds to 2|8 (2) 0 5
external forces, such as stress or strain. The elastic constants B (2) 0 4 ®)
for the cubic phases of the VMSD alloys were determined (4-82)

using isotropic strain and volume-conserving deformations of
the cubic primitive cells.

These conditions ensure that the material is able to resist
deformation under external forces. The bulk modulus (B) of
the VMSb alloys was also calculated and found to be within
the range of C,, <B < C,;, which is consistent with the criteria
for mechanical stability. Equation 2 *> shows how the elastic
constants affect the total energy of the material as a function
of strain (), providing insight into the material’s mechanical
response to external stresses and strains.

E(8) = E(-8) = E(0) + (Cy, — C1,) V8> + 0(8*) )

where E(0) is the total energy of an undisturbed lattice, Vj, is
the equilibrium volume, and Cij are elastic constants.

The total energy is then represented as follows:
sy — 1 2 4
E(6) = E(=8) = E(0) + 5Cyy V8" + o(s*) (6)

The results presented in Table III show that both VPtSb and
VPdSb are mechanically stable according to Born’s criteria for
a cubic structure.>* Specifically, the values of C,,, C,,, and C,,
satisfy the conditions C,,—C;,>0, C;;>0, and C,, >0, as well
as C;|+2C,>0and C\,<B<Cy;.

These elasticity constants are used to determine the bulk
modulus B, shear modulus G, Young’s modulus E, Poisson's
ratio v, and anisotropy factor A (Table III), which can be cal-
culated using the following equations:

C 1 —Cin+3Cy

G=———F 7

: )
Table Il The calculated values of lattice parameter (A), bulk modulus
(GPa) and its pressure derivative, the minimum energy (Ry) of both 9BG
VMSb compounds (M =Pd, Pt) E= ———_ 8)

. 3B+ G
Phase  a,(A) B (GPa) B'(GPa) E_;, (Ry)

VPdSb FM-III  6.121  129.044  4.672 -24956.525  _ (3B -2G) ©)
VPtSb  FM-III  6.160 140.466  4.733 —51,754.802 2(3B+ G)

Table lll The elasticity constants Cij (in GPa), the calculated elasticity constants: bulk B, shear G and Young's moduli E (in GPa), anisotropy
parameter A, B/G ratio, Poisson’s ratio v, and Debye temperature 6;, for VMSb (M =Pd and Pt) compounds

C Ci Cu B G E v BIG A op
VPdSb 147.04 124.98 81.76 132.33 53.47 141.37 0.32 2.47 741 272.85
VPtSb 168.73 131.96 89.42 144.22 61.41 160.41 0.31 2.36 4.86 266.82
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2Cy

A= %
C]l - C]2

(10)

The bulk modulus values obtained for VPdSb
(B=132.335 GPa) and VPtSb (B=132.335 GPa) com-
pounds are in close agreement with those obtained from the
structural properties (129.044 GPa, 140.466 GPa), respec-
tively, which confirms the accuracy of the elasticity con-
stants of VMSb (M =Pd, Pt) alloys. The Poisson ratios (v)
of VMSb (M =Pd, Pt) (0.32, 0.31, respectively) are higher
than that for ductile materials (0.26), confirming the duc-
tility of these compounds according to Frantsevich’s rule.
This can be attributed to the low elasticity constants and
bulk modulus B, which promote the ductility of the material.
Additionally, the B/G ratios for both the VPdSb (2.474) and
VPtSb (2.363) compounds are higher than the critical value
of 1.75, which classifies them as ductile materials.

Young's modulus of VPtSb (160.4 GPa) is higher than that
of VPdSb (141.4 GPa). To describe the elastic properties of
different materials, the anisotropy coefficient of expansion
and the elastic anisotropy are used to cause micro-cracks in
ceramics. The elastic anisotropy of VPdSb and VPtSb alloys
is demonstrated by the two- and three-dimensional Young's
modulus diagrams in Fig. 3. The values of anisotropy param-
eter A3 were obtained by applying Eq. 6 as seen in Table III.
For an isotropic material, A =1, whereas values greater or less
than one indicate a higher or lower level of anisotropic elas-
tic behaviour. Both compounds show an elastic deformation
anisotropy (A # 1), which supports the anisotropic material
hypothesis. Further computations are required to fully under-
stand the properties of the structural intermetallic compounds.

v (GPA)

109,6
103,4
97,24
91,06
84,88
78,70
72,52
66,34
60,16
53,98
47,80

The Debye temperature is an important physical property
given by the following equation:

el -

where h, kg and V,, represent Planck's constant, Boltzmann’s
constant, and the atomic volume, respectively. V,, is pro-
vided for a polycrystalline material by:

_
D_kB

3

11

]?

where V; and V¢ are the longitudinal and transverse velocities
of sound which are calculated using the bulk modulus B and
shear modulus G as follows>*:

%:1%+% (12)
Vt 1% i

3

v = (%) (13)
v = <§>E (14)
p

Table IV shows the velocity and temperature values for
both compounds. We can see that the Debye temperature and
melting temperature decrease as the atomic size increases.
Furthermore, the © values calculated for the VPdSb and
VPtSb alloys are 272.85 K and 266.82 K, which is close to
room temperature and has a significant impact on spintronics
device applications.

Fig.3 3D representation of Young's modulus for both compounds: (a) VPdSb and (b) VPtSb.
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Table IV The calculated transverse and longitudinal elastic wave
velocities, the average wave velocity, the temperature of Debye, and
the melting temperature for VPdSb and VPtSb compounds

vt(ms_;) vl(ms_;)) vm(ms_) 6D(K) TM (K)
VPdSb  2174.16  4762.02  2450.52  272.85 1422.0282
VPtSb  2144.96 446521  2411.61 266.82  1550.2285
Magnetic Properties

The magnetic moment is a crucial property in the field of
spintronics, and it was calculated for the Heusler alloys
with half-metallic behaviour using the optimized lattice
parameters. The total magnetic moment of these alloys
follows the Slater-Pauling (SP) rule,® which is one of
the methods used for evaluating the magnetic moments
of Heusler and half-Heusler compounds. For half-Heusler
compounds, the total magnetic moment can be expressed
by My =Z; — 18,3 where MT represents the spin magnetic
moment and Z is the total number of valence electrons.
The spin magnetic moment of half-Heusler compounds
is calculated by the difference between the spin-up and
spin-down states. The compounds have a C;, structure
with three atoms in each unit cell.”” For ternary 1:1:1 half-
Heusler compounds such as VMSb (M =Pd, Pt), no change

Electronic Properties

The electronic properties of the VMSb (M =Pd and Pt)
compounds were analysed by plotting their spin-polarized
band structures using WC-GGA, LSDA+U, and TB-mBJ
approximations Figs. 4 and 5. The band structures were
determined along the high symmetry path of the first
Brillouin zone. The analysis revealed that the spin-up
channel of the VPdSb compound has a metallic nature
because the valence band maximum (VBM) crosses the
conduction band minimum (CBM) at the Fermi level.
Contrary to the results of the other methods, the TB-mBJ
approximation shows a semiconductor character with an
indirect band gap for the VPtSb compound. The trans-
formed and increased nature of the band gap causes an
apparent change in the physical properties with an energy
gap Eg=0.48, 0.45, and 0.51 eV and Eg=0.55, 0.54, and
0.58 eV for VPdSb and VPtSb, respectively. The energy
gap occurs between the VBM at the I" point and the CBM
at the X point, validating the half-metallic characteristics
of the VPdSb and VPtSb compounds.

Table VI The calculated lattice constant (A), electronic band gaps for
the spin-down state (eV) and the electronic band structure nature of
VPdSb and VPtSb compounds

is observed in any of the functions (WC-GGA, LSDA+U,  Material  Pressure  a (A)  Eg Down (eV) Nature of band gap
TB-mBJ). The total magnetic moments are around 2ug (GPa)
In these compounds, the V atom has the most significant ~ VPdSb 0 6.121  0.51 Indirect
contribution to the total magnetic moment, with a small 5 6.194 0.47 Indirect
presence of an M magnetic moment. The local magnetic 10 6257 044 Indirect
moment of the Sb atom is negligible for both alloys and 15 6.313  0.41 Indirect
behaves similarly to the sp element in conventional Heu- 20 6.363  0.37 Metal
sler alloys. Table V presents the total and local magnetic ~ VPtSb 0 6.160  0.58 Indirect
moments for both VMSb (M =Pd and Pt) compounds, 5 6.227 0.54 Indirect
including contributions from atomic resolved magnetic 10 6.286  0.51 Indirect
moments (WC-GGA, LSDA+U, TB-mBJ) and interstitial 15 6.339 0.48 Indirect
magnetic moments. 20 6.386 043 Direct
TabIeV. Total and local Compounds Functional Magnetic moment
magnetic moments (WC- GGA,
LSDA+U, TB-mBJ) in (uB) per MlInt MV MM MSb MT
unit cell
VPdSb WC-GGA 0.334 1.715 0.026 —0.076 2.000
LSDA+U 0.341 1.685 0.037 —0.063 2.000
TB-mBJ 0.261 1.802 0.007 —-0.071 2.000
VPtSb WC-GGA 0.336 1.694 0.017 —0.047 2.000
LSDA+U 0.307 1.756 —-0.022 —0.041 2.000
TB-mBJ 0.254 1.731 0.028 -0.014 2.000
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Fig.4 The band structure of the VPdSb compound using: WC-GGA, LSDA+U, and TB-mBJ.
——=up — _dn
6 6
/, - [
/N
4 - I\
|\
— / N
N
2 A &: | ]
d N T >
8 0- =3 op ~ |Ep
B - Ne. <
= 4 | J
= <
2] ZNEN Ny
| ] %
4 - \ =] 44 =
N\ AN
X%\ i =N
N\
% ’-=§7"( /] -6 A
w LA T A X WK w LA T A X WK W K

Fig.5 The band structure of the VPtSb compound using: WC-GGA, LSDA+U, and TB-mBJ.

The electronic properties of a material provide important ~ used to calculate the total and partial densities of states
information about the behaviour of electrons at the Fermi (DOS) for the spin channels of both VPdSb and VPtSb at
level, and the presence of an energy gap is a key factor in  two different lattice parameters. The analysis revealed that
determining a material's suitability for certain applications  both compounds exhibit half-metallic behaviour with an
such as spintronics. In this study, the TB-mBJ method was  energy range of —6.0 to 6.0 eV, as shown in Fig. 6. The DOS
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Fig.6 Total and partial DOS

of the VPdSb and VPtSb com-
pounds obtained by the TB-mBJ
approach.

VPdSb — V-d —Pd-d

Density of States (states/eV)

o4 — — — —

Energy (eV)

—V-d —Pt-d

VPtSb

Density of States (states/eV)

plots indicate that the hybridization of the Pd-d and Pt-d
atoms in both the spin-up and spin-down channels results in
an excess of states between —6 eV and —1 eV. The calcula-
tions also show the presence of hybridization induced by the
V-d atom in all compounds between —1 eV and 3 eV.
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Effect of Pressure on Band Structure Properties

The electronic properties of VPdSb and VPtSb com-
pounds were investigated under different pressures rang-
ing from O to 20 GPa using the generalized gradient
approximation (WC-GGA). The band structures for the
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Fig. 7 Band structure of VPdSb alloy (in the 0-20 GPa range) at optimized lattice constant.
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Fig. 8 Band structure of VPtSb alloy (in the 0-20 GPa range) at optimized lattice constant.

spin-up and spin-down channels of both compounds are
presented in Figs. 7 and 8. Under pressure, both com-
pounds exhibit a metallic nature in the spin-up state due
to the valence band maximum (VBM) and conduction
band minimum (CBM), while the spin-down form shows
a semiconducting nature. For the VPdSb compound, the

indirect band gap (Eg) gradually decreases from 0.51 to
0.41 eV under a pressure range of 0—15 GPa. However,
the compound loses its half-metallic state at 20 GPa
with Eg=0.37 eV. The calculated band gaps and lattice
constants (A) are presented in Table VI. For VPtSb, the
spin-up channel is metallic, while the compound exhibits
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a semiconductor nature with indirect gaps of Eg=0.58,
0.54, 0.51, and 0.48 eV at pressures ranging from 0 to
15 GPa. At 20 GPa, the compound shows a direct band
gap of 0.43 eV in the spin-down channel. In summary,
increasing pressure gradually changes the electronic prop-
erties from half-metallic to metallic characters.

Conclusions

The purpose of the study was to investigate the structural,
elastic, electronic, and magnetic properties of VMSb
(M =Pd, Pt) alloys using first-principles calculations
based on density functional theory with the addition of
the Hubbard-U approximation. The results indicated that
the VMSb (M =Pd, Pt) compounds are half-metallic ferro-
magnetic (HMF) and stable in structure type III, with opti-
mized lattice constants of 6.121 and 6.160, respectively.

The electronic properties of the density of states (DOS)
and band structures revealed that the compounds exhibit
half-metallicity with indirect gap spin-down Eg values of
0.51 eV for VPdSb and 0.58 eV for VPtSb. The band struc-
tures gradually changed from half-metallic to metallic for
VPdSb, while VPtSb exhibited a half-metallic indirect gap.
The magnetic properties of both compounds were consistent
with the Slater-Pauling rule, confirming their ferromagnetic
half-metallic character. Additionally, even an applied pres-
sure ranging from 0 to 20 GPa had no significant effect on
the magnetic moment of the two compounds, indicating their
resistance to pressure.

Based on these results, the VMSb (M =Pd, Pt) alloys are
considered good candidates for the design and development
of spintronics devices.

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.
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Abstract: This paper presents an investigation of the properties of the double half Heusler alloy (DHH) K,NaRbAs,. The
structural, elastic, electronic, magnetic, and thermoelectric properties of the alloy are studied using the full-potential
linearized augmented plane wave method (FP-LAPW) with the generalized gradient GGA approximation, and the
GGA + Modified Becke-Johnson (mBJ) correlation potential is used to calculate the band structures and densities of
states. The K,NaRbAs, DHH alloy is derived from the previously studied parent half Heusler alloys KNaAs and KRbAs in
their ferromagnetic phase of type I structure (FM-I). Our findings confirm the thermodynamic stability and synthesizability
of K;NaRbAs, in normal conditions. The alloy is shown to be resistant to distortion and able to withstand reversible
deformation. The calculated elastic constants indicate that K,NaRbAs, is mechanically stable, ductile, and anisotropic, as
confirmed by 3D representation of its elastic moduli. Furthermore, the total magnetic moment of 2 pg demonstrates its half-
metallic behavior, which mainly due to arsenic atoms. Like its parent alloys KNaAs, and KRbAs, the K;NaRbAs, DHH
alloy could be suitable for use in spintronic technology. Additionally, the thermoelectric characteristics of the K,NaRbAs,
DHH alloy are investigated using semi-classical Boltzmann transport theory, based on a smoothed Fourier interpolation of
the bands, as implemented in the BoltzTraP package.

Keywords: Heusler alloy; Mechanical stability; Half-metallic gap; Spin-polarization; Magnetic properties

1. Introduction attempted to deepen their knowledge of the HMF behavior

to understand, predict and create new half-metallic mate-

Since its initial theoretical prediction, the Half-Metallic
ferromagnetism (HMF) character has attracted enormous
interest and has emerged as one of the most interesting
areas of research. In recent years, researchers have
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rials, due to their promising potential applications in
spintronic devices[ 1], magnetic tunnel junctions, magnetic
disk drives, spin injection devices and nonvolatile magnetic
random access memories [2]. Ideal HM ferromagnet
exhibits metallic nature in one spin channel (“up” or
“down”) and semiconducting(or insulating) nature in the
other spin channel, revealing a 100% spin polarization at
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the Fermi level [3, 4] with an integer value of the magnetic
moment. The HMF nature was first determined in NiMnSb
and PtMnSb half Heusler alloys [3-5]. Since then the half-
metallic character has been theoretically and experimen-
tally discovered in many other materials such as perovskite
oxides without transition metal LiBeOs[6], KBeOs [7],
KMgOs; [8], rutile TiO, and VO, [9], spinelsMgFe,0,4[10],
fluoro-perovskites Rb(Co/Fe)F; [11], double perovskite
Sr,CrWOg [12], and ternary oxides XMg;0O4 (X = Li, Na,
K, and Rb) [13]. Numerous Heusler alloys can be half-
metals as quaternary Heusler TiZrIrZ (Z = Al, Ga and
In)[14], full Heusler Zr,PdZ (Z = Al, Ga, and In) [15] and
half Heusler KNaAs, KRbAs[16]. Khandy et al. explored
the equilibrium electronic structure of the transition-metal
atom based Heuslers XTaZ (X = Pd, or Pt, Z = Al, Ga or
In))for possible thermoelectric applications[17]. Recently,
a novel class of Heusler alloys, named double half Heusler
alloys (DHH), has been discovered, inspired by the con-
ception of double perovskites A,B‘B‘‘O¢. They could be
thought of as collection of two half Heuslers of formula. It
is worth noting that the first prediction of this class of
materials was made by Anand et al.[18].

Half-Heusler materials have inherently high thermal
conductivities, which limits their thermoelectric efficiency.
To address this issue, Anand et al. investigated a large class
of relatively unexplored DHH compounds, which have
substantially lower lattice thermal conductivities due to
their crystal chemistry. Their work presented a reliable
method for identifying low-thermal-conductivity half-
Heuslers and highlighted a broad composition space for
their potential applications. This research has paved the
way for the systematic discovery of additional families of
sizable intermetallic semiconductors with diverse potential
applications. [18].

In the context of predicting new double half Heusler
alloys and understanding their physical properties,
K,NaRbAs, was investigated as a new compound in this
family. This study presents the structural, elastic, elec-
tronic, magnetic, and thermoelectric properties of the
K;NaRbAs, DHH alloy, and compares them with those of
its parent HH alloys KNaAs, KRbAs[16]. This paper is
organized as follows: after the introduction, Sect. 2 outli-
nes the used computational method. The results and dis-
cussion paragraph are presented in Sect. 3, followed by the
conclusion in Sect. 4, where the main points of the paper
are summarized.

2. Computational method
The properties of K,NaRbAs, DHH compound, derived

from its parent HH alloys KNaAs and KRbAs, were
determined using density functional theory (DFT) with the

full potential linearized augmented plane wave (FP-
LAPW) method [19], as implemented in the WIEN2k
code[20]. The generalized gradient approximation (GGA)
was used to treat the exchange and correlation effects
[21].The muffin-tin (MT) radii, chosen for K, Na, Rb, and
As atoms, are 2.35 a.u, 2.35a.u, 2.35. a.u, and 2.23 a.u,
respectively. The spherical harmonics were developed up
to lmax = 10 within the MT spheres, and at 12, the
Gaussian value Gmax was used. An energy cut-off value of
RMT*Kmax = 8 was used in the interstitial region. The
energy and charge convergences for the iteration procedure
of self-coherence calculations were taken to be 10~ e and
107> Ry, respectively. The First Brillouin zone (BZ) inte-
gration was performed using 1000 K-points by the tetra-
hedral method[22].

3. Results and discussions
3.1. Structural properties

The studied compound K,;NaRbAs, crystallizes in a
tetragonal structure with P-4m2 space group N°115 (see
Fig. 1).

To determine the stable magnetic phase, the optimiza-
tion of both parent HH alloys was carried out within GGA
in their ferromagnetic, non-magnetic, and antiferromag-
netic phases [16], as shown in Fig. 2.

As shown in Fig. 2, the ferromagnetic phase of type I
structure (FM-I) has the lowest total energy for both
compounds, indicating that it is the energetically most
stable phase compared to the non-magnetic (NM) and
antiferromagnetic (AFM) phases at the equilibrium
volume.

Fig. 1 Crystal structure of K,;NaRbAs, DHH alloy
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From the obtained magnetic and structural ground states
of KNaAs and KRbAs (FM-I), K,;NaRbAs, structure is
constructed by substituting, in the conventional lattice of
KNaAs, two Na atoms with Rb atoms. Consequently, only
the FM phase of this acquired DHH structure is optimized,
and as shown in Fig. 3, the optimized volume of K,;NaR-
bAs, is 1649.7486 (bohr?).

Then the structural parameters of the equilibrium are
calculated by adjusting the total energy as a function of the
volume, using the Birch Murnaghan equation of state [23].
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The resulted structural ground state of DHH has a parent
HH with a lattice parameter of ayy, which is equal to cpyy,
corresponding to a, b and ¢

("]

}

while ApHH — bDHH = u%’
values, as presented in Table 1.

The obtained parameters corresponding to the optimized
structures for different magnetic phases of the equilibrium
lattice parameter, bulk modulus, and its derivative, are
given in Table 1. The formation energy is a useful norm to
examine the synthesizability and stability of K;NaRbAs,
compound. The formation energy of K,;NaRbAs, in
Table 1 has been evaluated from the following equation:

Ef(KzN&RbASz) = Etm(KzNaRbASZ) — 2EtO[(K)

— E(Na) — Eoi(Rb) — Eii(As)  (2)

where E(Ko;NaRbAs;) is the total energy of K,NaRbAs;;
while, E/(K), Ewt(Na), Eit(Rb) and Eyy(As) correspond
to the total energy for K, Na, Rb, and As, per atom,
respectively. The obtained negative formation energy of -
0.0642 Ry, for the studied compound, indicates that this
material is thermodynamically stable. Therefore, it can be
synthesized in the DHH structure.

Additionally, to verify the dynamic stability of the
K;,;NaRbAs,material, we calculated the phonon dispersion
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Table 1 Calculated lattice parameter (A), B bulk modulus (GPa), B’ its derivative pressure, and Efyuaion formation energies (Ry) for

K;NaRbAs, in their FM phase with structure type I

Alloy Phase apy(apun = ann /2, B (GPa) B Eformation
CDHH = GHH)

HH: KNaAs[16] FM 7.564 14.835 4.166 —0.0381
AFM 7.576 14.881 3.931
NM 7.573 14.972 4.086

HH: KRbAs[16] FM 8.173 11.117 4.253 —0.0355
AFM 10.319 10.931 4.055
NM 8.138 11.056 4.443

DHH: K,NaRbAs, FM 5.2917 12.6115 4.164 - 0.0642

diagram through the linear response method within the
density functional perturbation theory (DFPT) as imple-
mented in the CASTEP computational software [24]. The
CASTEP computational code is an implementation of the
pseudo potential plane-wave method (PP-PW) in the
framework of density functional theory (DFT). To ensure
sufficiently accurate total energy calculations, a plane-
wave basis set cut-off of 770 eV and a 6 x 6 x 4 Mon-
khorst—Pack scheme k-point grid for the integration over
BZ were applied. The obtained phonon dispersions along
lines of high symmetry in BZ are shown in Fig. 4. Note
that absence of soft modes (imaginary modes; negative
frequencies) in the phonon dispersion curve of a material
implies its dynamic stability. Therefore, the absence of soft
modes (negative frequencies) in the phonon dispersion
curve of the title compound confirms its dynamical
stability.

The equilibrium lattice constant (a,), bulk modulus (B),
its pressure derivative (B°), and formation energies (Eg,,-
mation) Of the compounds are listed in Table 1.The results,
presented in Table 1, show that the bulk modulus (measure
of compression resistance) diminishes as X atomic number
rises.

3.2. Elastic properties

The mechanical behavior of crystals is strongly tied to their
elastic properties, which enable us to examine crucial
details about mechanical stability and comprehend the kind
of forces in materials. Using the IRelast package, inte-
grated into the WIEN2k code, the elastic constants are
evaluated in order to check the mechanical stability of our
compound.

Compounds, that have a tetragonal structure, have six
independent elastic constants, denoted by; C;;, C;s Cy3,
C33, Cy4y and Cgg, are necessary and sufficient to charac-
terize the elastic behavior of the K,NaRbAs, alloy. The

mechanical stability of a tetragonal structure requires that
Born’s stability criteria be satisfied [25].

(C11 —2Cr2) >0,

(Ci1 + C33 —2C13) > 0,

(2C11 + C33 +2C1p +4Cy3) > 0,

Ci1>0,C33>0,C44 >0,Ce6 >0 (3)

The obtained elastic constants satisfied all the Born’s
stability criteria. So; The K,NaRbAs, alloy is confirmed to
be mechanically stable. The computed C; constants are
given in Table 2.The following formulae can be used to
estimate various mechanical quantities such as Bulk (B),
shear (G), Young’s (E) moduli, anisotropic factor and
Poisson’s ratio:

B = (2Ci1 + C33+2C1» +4C13)/9 (4)
2C — -2 6 3
G- 11 +C33 — Cip —2C13 + 6Cy4 + 3Cq (s)
15
9BG
E=_20 6
(G +3B) (6)
_ (3B-20) -
[2(33 + G)}

It can be observed that the bulk modulus value,
determined by Eq. (4), calculated through the elastic
constants of the studied alloy is fairly in agreement with
that obtained from the total energy optimization.

The estimated data shows that K,NaRbAs, can resist
reversible deformation brought on by shear stress and can
endure distortion better than its parent HHs.

To evaluate the brittleness and ductility of a material, it
is necessary to calculate B/G ratio, where the critical value
which separates the ductile and brittle behavior is equal to
1.75 (brittle < 1.75 < ductile) [26]. According to Pugh’s
analysis, the B/G ratio, for K;NaRbAs, DHH alloy,
exceeds 1.75, indicating that it falls into the ductile
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category. This result is consistent with our previous find-
ings on the KNaAs and KRbAs HH alloys[16], which are
the parent materials of the K,NaRbAs, DHH alloy.

Machinability is the ability of a metal to be cut to
remove material with a satisfactory finish at low cost.
Materials with good machinability (free machining mate-
rials) require low cutting power, obtaining a good finish
and without significant tool wear. Factors that typically
improve a material’s performance often degrade its
machinability, presenting a significant engineering chal-
lenge. The machinability index, p,, of a material is defined
by B/Cys. The useful material, with a high machinability,
should be strong (i.e. high bulk modulus) and malleable
(i.e. low C.)[27]. The calculated machinability indices are
in the sequence: K,;NaRbAs, < KRbAs < KNaAs, as
shown in Table 2.

Hardness (H) is a measure of the resistance to a plastic
deformation in the field of materials science, which is the
opposite of softness. Strong intermolecular bonds typically
describe a macroscopic hardness. Ductility, elastic stiff-
ness, plasticity, deformation, strength, toughness, vis-
coelasticity, and viscosity are all factors that affect
hardness. H is expressed by[28]:

(1 =2v)E
H= ety (8)

The K,;NaRbAs, DHH has a highest hardness of 0.53
GPa, compared to those of their parents HHs, illustrated in
Table 2.

The Zener contrast factor is strongly correlated with the
possibility of inducing micro cracks in materials, and it is
an important physical quantity that informs us about the
structural stability. For an isotropic system, A equals the
unity, and the divergence from it measures the degree of
elastic anisotropy. One may observe, from Table 2, that the
K;,;NaRbAs, DHH is more anisotropic than its parent HHs.
Poisson’s ratio (v) is a useful parameter for understanding
the nature of a compound’s bonding forces. The calculated
value of v for the K,NaRbAs, DHH alloy is 0.33, which
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Fig. 4 Phonon dispersion curve of the K,NaRbAs, compound

falls within the range of 0.25 to 0.5 observed in its HH
parent compounds. This suggests that the bonding in this
alloy has an ionic character.

In fact, three-dimensional surfaces can also be used to
describe the anisotropy of a material in specific directions.
For that, the software MATrix LABoratory, which is made
and published by J. Nordmann et al.[29], was used to plot
the 3D anisotropic bulk, Young’s and shear moduli as well
as Poisson’s ratio surfaces. It is worth mentioning that this
software was used for the first time by H. Bouafia et al. [30]
for the LuAuSn HH alloy. For a tetragonal system, the
expressions of the elastic moduli are, as follows:

1
3= (S11+ S12 + S13) — (Si1 + S12 — S13 — $33)53 9)
1
E = S11 (l‘l1 + lg) + (2513 - S44) (l%l% + l%lg) + S33l;1
+ (2812 + Se6) 315 (10)
1 Sa4 2
—=S Sii—8p)——|(1-1
G 44+[( 11 12) 2}( 3)
+2(Sll + 833 — 2813 —S44)l§(1 —l%) (11)
[ sinfcosg
where I, | = | sinfsing |, and S; is compliance
I cosf
coefficient.
By = [2(C11 + C12) + C33 +4C13]/9 (12)
Gy = [M+3C11 —3C12+12C44+6C66]/30 (]3)
Br = C*/M 14)

(
Gr = 15{(18By/C?) + [6/(C11 — Cp2)] + (6/Cus) + (3/Cee)}

(15)

where C? = (Ci1 4+ C12)C33 — 2C%3;M =C; +Cp+
2C33 —4C3

By = (By + Bg)/2 (16)
Gy = (Gy +Gg)/2 (17)

The Young’s modulus (E), Poisson’s ratio (v) and Zener
anisotropic factor are computing with the following
equations:

9By Gl

=7 18

B =3B, + Gy (18)
3By — 2Gy

_ 19

' = 203By + Gu) (19)
Gy By

Al=5—"4+""_% 20

GR+BR (20)

The 3D surface of an isotropic system would have a
spherical shape; therefore any deviation from that shape
reflects the degree of anisotropy. As per Fig. 5, the surfaces
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Table 2 Calculated elastic constants C;;, Cja, Cy3, C33, Cyy Cgg, bulk B, machinability index B/Cy, Shear G, Young E moduli, hardness H (in
GPa), anisotropic parameter A, B/G, Poison’ s ratio v, for K,NaRbAs; in its structural and magnetic ground states

Compound B C] 7 C12 C]_g ij C44 B/C44 C66 G E A B/G v H

KNaAs[16] 14.20 16.40 13.10 1 /" 4.46 3.18 1 2.99 8.39 2.70 4.74 0.40 0.20
KRbAs[16] 12.08 17.96 9.14 /" /" 4.16 2.90 1 4.26 11.43 0.94 2.84 0.34 0.45
K,;NaRbAs, 12.20 18.27 7.78 9.90 18.32 5.86 2.08 3.37 4.71 12.53 0.27 2.59 0.33 0.53

of (B), (E) and (G) moduli and (v) clearly deviate from a
spherical shape, which represents the clear elastic
anisotropy of K,NaRbAs,.

Among these mechanical properties, the bulk modulus
of K;NaRbAs, is nearly isotropic. This is evident in 3D
representation (refer to Fig. 5(a)) which appears almost
spherical (i.e. not spherical), as expected for a tetragonal
structure. For the Young’s modulus, we can observe a
significant deviation from the sphere shape along
the < 111 > direction, whereas for the shear modulus and
Poisson’s ratio, the deformation is
along < 001 > direction.

The universal anisotropy index AY, which is determined
by the upper and lower limits of the bulk and shear moduli,
is expressed by Eq. (20). The crystal displays isotropic
behavior when Ay is equal to zero, and any deviation from
this value indicates elastic anisotropy. Our compound
exhibits elastic anisotropy, as its computed value of Ay
was found to be 0.27. As far as we know, there is no
theoretical or experimental information about the K,NaR-
bAs, DHH to compare with.

The Calculation of the elastic constants has an impact on
how the materials behave when heated; as a result, we can
assess several thermal properties, such as the Debye tem-
perature and melting temperature, which are listed in
Table 3. The Debye temperature (6p) is calculated, using
the equation below[26]:

hT o3 1R
Op =— m
D= [4nVJ "

where A is Planck’s constant, kp is Boltzmann’s constant,
Vy is the average atomic volume, and v, is the average
sound wave velocity, which depends on the transverse (v,)
and longitudinal (v;) sound velocities [31]:

(21)

12 1\
m=|=|=+—= 22
m= 5G] &
and these are given by the equations, as follows:
3B+ 4G
V= [22H40 (23)
3p

and

G
V=4 /— (24)
p
where p is the density. The outcomes of our calculations
are given in Table 3.

3.3. Electronic properties

In order to provide a more accurate description of the
electron profile, the following electronic properties were
examined at the equilibrium lattice constant using the GGA
approach.

3.3.1. Band structures

Figure 6 shows the spin-polarized band structures for the
compound K,;NaRbAs,, calculated by GGA and TB-mBJ
approximations. These are drawn along the high symmetry
points in the first Brillouin zone.

We can see, for the spin down states of K,NaRbAs,, a
metallic character due to the intersection of the valence
bands with the Fermi level. On the other hand, for the spin-
up channel, the compound exhibits a semiconductor char-
acter. In this channel (spin-up), one can observe that the
compound K,;NaRbAs, has indirect band gaps of 1.40 and
2.62 eV, calculated by GGA and TB-mBJ approximations.
The half-metallic gap (HMGap) is inferred from the
valence band maximum (VBM) which is closer than con-
duction band minimum (CBM) to the Fermi level. The
obtained half-metallic gap values are 0.34 and 0.39 eV for
GGA and TB-mBJ methods, respectively. Therefore, we
can see that the TB-mBJ method opens the band gap,
located at high symmetry points I and X, for the valence
band maximum (VBM), and conduction band minimum
(CBM), respectively.

3.3.2. Densities of electronic states:

To explain the contribution of the different electronic states
to the band structures, it is necessary to determine the total
(TDOS) and partial (PDOS) densities of states. In order to
find out which states are responsible for the bond. The
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Fig. 5 3D graphical representation of (a) Bulk, (b) Young’s and (c¢) Shear moduli and (d) Poisson’s ratio of DHH K,NaRbAs, (color

figure online)

Table 3 Calculated longitudinal (v;), transverse elastic wave veloc-
ities (v,), average acoustic (y,,) velocities (in m/s), Debye (6p) and
melting (7,,) temperatures (in K) of K,NaRbAs, in its structural and
magnetic ground states

Compound  v(m/s) v(m/s) v(m/s)  O0p(K) T
KNaAs[16] 2941.36 1193.26 1351.07 121.746  649.9393
KRbAs[16]  2705.1 1324.81 1487.96 124.094 622.1995
K,NaRbAs, 2843.92 1436.11 1610.09 139.307 436.297

TDOS and PDOS are calculated for both spin channels (i.e.
spin-up and spin-dn), as shown in Fig. 7.

From both approaches, GGA, and GGA + mBJ, The
PDOSs show that spin-exchange splitting, fundamentally
originated from p states of Arsenic As atoms, which mainly
contribute to the TDOS for the spin-up and-down channels,
around the Fermi level.

This exchange splitting causes the spin-polarization of
100%, obtained by:
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Fig. 6 Calculated band (a) GGA (b)
structure of K,NaRbAs, 6 o 6 7
compound in both (a), (¢) Spin- p % % / d
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where p(Er) and p|(Er) are the spin-dependent densities
of states at Eg, (1) and (|) represent spin-up and spin-dn
states, respectively. P equals zero for paramagnetic or
antiferromagnetic materials. As shown in Fig. 7, our
studied material is fully spin-polarized (i.e. P = 100%),
indicating a half-metallic character of the studied alloy.
However, the s and p states of K, Na atoms as well as Rb-d

(25)

2+
e
=l
\/
B0 peamee— e Ep
T
2
R A T A X ZM = T

have little contributions to the TDOS for both spin chan-
nels, around Epg.

3.4. Magnetic properties

To describe the spin effect on the considered material, we
have computed its magnetic properties. The local, inter-
stitial, and total magnetic moments for the DHH K,NaR-
bAs, alloy, estimated by employing GGA approach are
grouped in Table 4. It is noticeable that the total magnetic
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Fig. 7 Calculated DOS of GGA

d

K,NaRbAs, compound for both 12 i ;
spin-up and spin-down states by

GGA and GGA + mBJ
approximations (color

figure online)
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Table 4 Calculated total, atom-resolved and interstitial magnetic moments (in pg) in the unit cell for K,NaRbAs, in its structural and magnetic

ground states

Compound Mlol MK MNa MRI; MAS Minl

KNaAs[16] 1.000 0.017 0.001 - 0.420 0.562
KRbASs[16] 1.000 0.010 0.016 0.399 0.575
K;NaRbAs, 2.000 0.013 - 0.004 0.033 0.422 1.100

moment of the investigated compound has an integer value
of 2 per unit cell which fulfills the necessary condition of
a half-metallic behavior. According to Table 4, the primary
source of the total magnetic moment in K,NaRbAs, is the
As atom, which is consistent with the findings of previous
studies on its parent HH alloys, KNaAs and KRbAs [16].

3.5. Thermoelectric properties:

Thermoelectricity has recently gained popularity as an
“‘environmentally friendly’’ technique because it does not
use moving parts or chemical reactions resulting in no
waste matter. The efficiency of a thermoelectric material is
determined by the dimensionless parameter Z7, figure of
merit, which is given by: Zy = %51,
trical conductivity, S is the Seebeck coefficient, x is the
thermal conductivity of the material and T is the temper-
ature in K.

A substance with a high Seebeck coefficient S, high
electric conductivity, and low thermal conductivity is ideal
for thermoelectric applications. Many recent investigations
on HHs demonstrated that they have high energy factors

where o is the elec-

(S%0), leading scientists to concentrate their study on these
materials.

In this part, we thoroughly examine the thermoelectric
behavior of the considered DDH alloy to determine if it can
function as a thermoelectric material. So, we employed
semi-classical Boltzmann transport theory, based on a
smoothed Fourier interpolation of the bands, as imple-
mented in the BoltzTraP code, to investigate the thermo-
electric characteristics of K,NaRbAs, DDH alloy. In the
temperature range, from 150 to 1000 K, thermal (k./1),
electrical conductivity (o/t), and Seebeck coefficient
(S) were calculated.

The energy spectral density of the electrical conductiv-
ity is given by the following equation:

o(e — &ix)

82
6'0(/}(8) = NZ ‘E,‘7]<V“(l., k)v/;(i, k) W
ik

where o and f are the coordinate components, i is the
electronic band number, k is the wave vector, N is the total
number of k points, e is the elementary charge, T is the
relaxation time of the charge carrier, and ¢ is the band
energy. Also, the group velocity v is:

(26)
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. 1 66,‘7/{
V(i k) = 25
o

(27)

Using Eq. (27), the conductivity tensor ¢,s can be
written as a function of temperature T and Fermi level p as
follows:

(T =g [ o) - L5

In Eq. (28), Q is the unit cell volume and fis the Fermi—
Dirac distribution. Similarly, the Seebeck coefficient tensor
S.p can be written as:

Sup(T 1) = 7&90;@’ m [t
_ [_ W} de

(28)

(29)

The Seebeck coefficient of materials with holes (p-type
materials), as dominant charge carriers, is positive whereas
it is negative for n-type materials (i.e. electrons as
dominant charge carriers).

Figure 8 shows that the Seebeck coefficient (S), in the
spin-dn channel, decreases as the temperature rises, while
the opposite trend is observed in the spin-up channel.
Specifically, at ambient temperature (300°K), S is.1259.3.
pV/K in the spin-up state, confirming the electrons are the
majority carriers. In addition, the S coefficient is.57.9..uV/
K in the spin-dn state; suggesting a high positive spin-up
Seebeck coefficient in the K,;NaRbAs, DDH alloy. These
findings indicate that this DDH material is of p-type.

Figure 9 depicts the Fermi level plot of the electrical
conductivity per relaxation time (o/1) of K;NaRbAs, as a
function of temperature for both spin channels. In the spin-
up channel, the electrical conductivity remains relatively
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Fig. 8 Temperature dependence of the Seebeck coefficient of the
spin-up and spin-dn channels of K,NaRbAs, (color figure online)
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Fig. 9 Temperature dependence of the electrical conductivity for the
spin up and spin dn channels of K;NaRbAs, (color figure online)
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Fig. 10 Temperature dependence of the electronic thermal conduc-
tivity in the spin-up and spin-dn channels of K;NaRbAs, DHH alloy
(color figure online)

constant up to a particular temperature threshold (400 °K),
after which it starts to increase. In contrast, in the spin-dn
channel, the ¢/t value increases with rising temperature.
The o/t value in the spin-up state for the DHH at room
temperature (300°K) is O while, in the spin-dn state, it is
236.4810""Q""' m~' s7'. Due to lower DOS values at
Fermi level, the electrical conductivity values for the spin-
up channel are lower than those of the spin-down channel.
These results demonstrate a high electrical conductivity
and, consequently, a low resistivity of this material.
Figure 10 displays the temperature dependence, for both
spin-up and spin-down channels, of the electronic thermal
conductivity, scaled by the relaxation time. This is similar
in character to o/7, as is due to the thermal excitation of
electrons at higher temperatures, leading to increase heat



Half-metallic character and thermoelectric properties

conduction. In the examined alloy, a, linear increase in
K./t is observed for temperatures above approximately
600 K.

4. Conclusions

In this paper, we have presented a comprehensive theo-
retical investigation of the structural, elastic, magnetic, and
electronic properties of the new DHH alloy K,NaRbAs,
using the FP-LAPW method with GGA and GGA + mBJ
approximations. Our study has yielded several important
findings, which are summarized below:

Firstly, we have determined the structural ground state
of K;NaRbAs, and demonstrated its stability through the
negative formation energy and calculated elastic constants.
We have also shown that this DHH alloy can withstand
distortion better than its reported parent KNaAs and
KRbAs HHs, and can resist reversible deformation carried
on by shear stress. Our results suggest that K,NaRbAs, is a
hard material with high Young’s modulus. Secondly, we
have predicted a half-metallic ferromagnetic character in
K,;NaRbAs, based on the calculated total magnetic
moment, and have confirmed this through the band struc-
ture and DOS diagrams. Our study shows that the p-orbitals
of Arsenic atoms play a major role in the half-metallic
ferromagnetism for this DHH alloy. Thirdly, we have
investigated the mechanical profile of K,NaRbAs, and
found it to be a ductile and anisotropic material. Fourthly,
the calculation of the thermoelectric properties of
K;NaRbAs, DHH, using the BoltzTraP code within the
Wien2k program, shows that it has a significantly high
Seebeck coefficient and excellent electrical conductivity in
the spin up and spin-dn channels at room temperature,
suggesting its potential as a promising thermoelectric
material. Finally, we have discussed the potential of
K,;NaRbAs, DHH for future spintronic applications.

Our study offers a comprehensive understanding of the
properties and potential applications of K;NaRbAs, DHH.
We anticipate that these findings will encourage research-
ers to do further experimental and theoretical investigations
on DHHs.
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